diff options
Diffstat (limited to 'abs/core/kernel26/tmp')
-rw-r--r-- | abs/core/kernel26/tmp/patch-2.6.37-ck2 | 9083 |
1 files changed, 9083 insertions, 0 deletions
diff --git a/abs/core/kernel26/tmp/patch-2.6.37-ck2 b/abs/core/kernel26/tmp/patch-2.6.37-ck2 new file mode 100644 index 0000000..c4657e7 --- /dev/null +++ b/abs/core/kernel26/tmp/patch-2.6.37-ck2 @@ -0,0 +1,9083 @@ +Index: linux-2.6.37-ck2/arch/powerpc/platforms/cell/spufs/sched.c +=================================================================== +--- linux-2.6.37-ck2.orig/arch/powerpc/platforms/cell/spufs/sched.c 2010-05-17 18:51:19.000000000 +1000 ++++ linux-2.6.37-ck2/arch/powerpc/platforms/cell/spufs/sched.c 2011-02-14 09:47:50.982252001 +1100 +@@ -64,11 +64,6 @@ + static struct timer_list spuloadavg_timer; + + /* +- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). +- */ +-#define NORMAL_PRIO 120 +- +-/* + * Frequency of the spu scheduler tick. By default we do one SPU scheduler + * tick for every 10 CPU scheduler ticks. + */ +Index: linux-2.6.37-ck2/Documentation/scheduler/sched-BFS.txt +=================================================================== +--- /dev/null 1970-01-01 00:00:00.000000000 +0000 ++++ linux-2.6.37-ck2/Documentation/scheduler/sched-BFS.txt 2011-02-14 09:47:50.984252001 +1100 +@@ -0,0 +1,351 @@ ++BFS - The Brain Fuck Scheduler by Con Kolivas. ++ ++Goals. ++ ++The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to ++completely do away with the complex designs of the past for the cpu process ++scheduler and instead implement one that is very simple in basic design. ++The main focus of BFS is to achieve excellent desktop interactivity and ++responsiveness without heuristics and tuning knobs that are difficult to ++understand, impossible to model and predict the effect of, and when tuned to ++one workload cause massive detriment to another. ++ ++ ++Design summary. ++ ++BFS is best described as a single runqueue, O(n) lookup, earliest effective ++virtual deadline first design, loosely based on EEVDF (earliest eligible virtual ++deadline first) and my previous Staircase Deadline scheduler. Each component ++shall be described in order to understand the significance of, and reasoning for ++it. The codebase when the first stable version was released was approximately ++9000 lines less code than the existing mainline linux kernel scheduler (in ++2.6.31). This does not even take into account the removal of documentation and ++the cgroups code that is not used. ++ ++Design reasoning. ++ ++The single runqueue refers to the queued but not running processes for the ++entire system, regardless of the number of CPUs. The reason for going back to ++a single runqueue design is that once multiple runqueues are introduced, ++per-CPU or otherwise, there will be complex interactions as each runqueue will ++be responsible for the scheduling latency and fairness of the tasks only on its ++own runqueue, and to achieve fairness and low latency across multiple CPUs, any ++advantage in throughput of having CPU local tasks causes other disadvantages. ++This is due to requiring a very complex balancing system to at best achieve some ++semblance of fairness across CPUs and can only maintain relatively low latency ++for tasks bound to the same CPUs, not across them. To increase said fairness ++and latency across CPUs, the advantage of local runqueue locking, which makes ++for better scalability, is lost due to having to grab multiple locks. ++ ++A significant feature of BFS is that all accounting is done purely based on CPU ++used and nowhere is sleep time used in any way to determine entitlement or ++interactivity. Interactivity "estimators" that use some kind of sleep/run ++algorithm are doomed to fail to detect all interactive tasks, and to falsely tag ++tasks that aren't interactive as being so. The reason for this is that it is ++close to impossible to determine that when a task is sleeping, whether it is ++doing it voluntarily, as in a userspace application waiting for input in the ++form of a mouse click or otherwise, or involuntarily, because it is waiting for ++another thread, process, I/O, kernel activity or whatever. Thus, such an ++estimator will introduce corner cases, and more heuristics will be required to ++cope with those corner cases, introducing more corner cases and failed ++interactivity detection and so on. Interactivity in BFS is built into the design ++by virtue of the fact that tasks that are waking up have not used up their quota ++of CPU time, and have earlier effective deadlines, thereby making it very likely ++they will preempt any CPU bound task of equivalent nice level. See below for ++more information on the virtual deadline mechanism. Even if they do not preempt ++a running task, because the rr interval is guaranteed to have a bound upper ++limit on how long a task will wait for, it will be scheduled within a timeframe ++that will not cause visible interface jitter. ++ ++ ++Design details. ++ ++Task insertion. ++ ++BFS inserts tasks into each relevant queue as an O(1) insertion into a double ++linked list. On insertion, *every* running queue is checked to see if the newly ++queued task can run on any idle queue, or preempt the lowest running task on the ++system. This is how the cross-CPU scheduling of BFS achieves significantly lower ++latency per extra CPU the system has. In this case the lookup is, in the worst ++case scenario, O(n) where n is the number of CPUs on the system. ++ ++Data protection. ++ ++BFS has one single lock protecting the process local data of every task in the ++global queue. Thus every insertion, removal and modification of task data in the ++global runqueue needs to grab the global lock. However, once a task is taken by ++a CPU, the CPU has its own local data copy of the running process' accounting ++information which only that CPU accesses and modifies (such as during a ++timer tick) thus allowing the accounting data to be updated lockless. Once a ++CPU has taken a task to run, it removes it from the global queue. Thus the ++global queue only ever has, at most, ++ ++ (number of tasks requesting cpu time) - (number of logical CPUs) + 1 ++ ++tasks in the global queue. This value is relevant for the time taken to look up ++tasks during scheduling. This will increase if many tasks with CPU affinity set ++in their policy to limit which CPUs they're allowed to run on if they outnumber ++the number of CPUs. The +1 is because when rescheduling a task, the CPU's ++currently running task is put back on the queue. Lookup will be described after ++the virtual deadline mechanism is explained. ++ ++Virtual deadline. ++ ++The key to achieving low latency, scheduling fairness, and "nice level" ++distribution in BFS is entirely in the virtual deadline mechanism. The one ++tunable in BFS is the rr_interval, or "round robin interval". This is the ++maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy) ++tasks of the same nice level will be running for, or looking at it the other ++way around, the longest duration two tasks of the same nice level will be ++delayed for. When a task requests cpu time, it is given a quota (time_slice) ++equal to the rr_interval and a virtual deadline. The virtual deadline is ++offset from the current time in jiffies by this equation: ++ ++ jiffies + (prio_ratio * rr_interval) ++ ++The prio_ratio is determined as a ratio compared to the baseline of nice -20 ++and increases by 10% per nice level. The deadline is a virtual one only in that ++no guarantee is placed that a task will actually be scheduled by this time, but ++it is used to compare which task should go next. There are three components to ++how a task is next chosen. First is time_slice expiration. If a task runs out ++of its time_slice, it is descheduled, the time_slice is refilled, and the ++deadline reset to that formula above. Second is sleep, where a task no longer ++is requesting CPU for whatever reason. The time_slice and deadline are _not_ ++adjusted in this case and are just carried over for when the task is next ++scheduled. Third is preemption, and that is when a newly waking task is deemed ++higher priority than a currently running task on any cpu by virtue of the fact ++that it has an earlier virtual deadline than the currently running task. The ++earlier deadline is the key to which task is next chosen for the first and ++second cases. Once a task is descheduled, it is put back on the queue, and an ++O(n) lookup of all queued-but-not-running tasks is done to determine which has ++the earliest deadline and that task is chosen to receive CPU next. ++ ++The CPU proportion of different nice tasks works out to be approximately the ++ ++ (prio_ratio difference)^2 ++ ++The reason it is squared is that a task's deadline does not change while it is ++running unless it runs out of time_slice. Thus, even if the time actually ++passes the deadline of another task that is queued, it will not get CPU time ++unless the current running task deschedules, and the time "base" (jiffies) is ++constantly moving. ++ ++Task lookup. ++ ++BFS has 103 priority queues. 100 of these are dedicated to the static priority ++of realtime tasks, and the remaining 3 are, in order of best to worst priority, ++SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority ++scheduling). When a task of these priorities is queued, a bitmap of running ++priorities is set showing which of these priorities has tasks waiting for CPU ++time. When a CPU is made to reschedule, the lookup for the next task to get ++CPU time is performed in the following way: ++ ++First the bitmap is checked to see what static priority tasks are queued. If ++any realtime priorities are found, the corresponding queue is checked and the ++first task listed there is taken (provided CPU affinity is suitable) and lookup ++is complete. If the priority corresponds to a SCHED_ISO task, they are also ++taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds ++to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this ++stage, every task in the runlist that corresponds to that priority is checked ++to see which has the earliest set deadline, and (provided it has suitable CPU ++affinity) it is taken off the runqueue and given the CPU. If a task has an ++expired deadline, it is taken and the rest of the lookup aborted (as they are ++chosen in FIFO order). ++ ++Thus, the lookup is O(n) in the worst case only, where n is as described ++earlier, as tasks may be chosen before the whole task list is looked over. ++ ++ ++Scalability. ++ ++The major limitations of BFS will be that of scalability, as the separate ++runqueue designs will have less lock contention as the number of CPUs rises. ++However they do not scale linearly even with separate runqueues as multiple ++runqueues will need to be locked concurrently on such designs to be able to ++achieve fair CPU balancing, to try and achieve some sort of nice-level fairness ++across CPUs, and to achieve low enough latency for tasks on a busy CPU when ++other CPUs would be more suited. BFS has the advantage that it requires no ++balancing algorithm whatsoever, as balancing occurs by proxy simply because ++all CPUs draw off the global runqueue, in priority and deadline order. Despite ++the fact that scalability is _not_ the prime concern of BFS, it both shows very ++good scalability to smaller numbers of CPUs and is likely a more scalable design ++at these numbers of CPUs. ++ ++It also has some very low overhead scalability features built into the design ++when it has been deemed their overhead is so marginal that they're worth adding. ++The first is the local copy of the running process' data to the CPU it's running ++on to allow that data to be updated lockless where possible. Then there is ++deference paid to the last CPU a task was running on, by trying that CPU first ++when looking for an idle CPU to use the next time it's scheduled. Finally there ++is the notion of cache locality beyond the last running CPU. The sched_domains ++information is used to determine the relative virtual "cache distance" that ++other CPUs have from the last CPU a task was running on. CPUs with shared ++caches, such as SMT siblings, or multicore CPUs with shared caches, are treated ++as cache local. CPUs without shared caches are treated as not cache local, and ++CPUs on different NUMA nodes are treated as very distant. This "relative cache ++distance" is used by modifying the virtual deadline value when doing lookups. ++Effectively, the deadline is unaltered between "cache local" CPUs, doubled for ++"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning ++behind the doubling of deadlines is as follows. The real cost of migrating a ++task from one CPU to another is entirely dependant on the cache footprint of ++the task, how cache intensive the task is, how long it's been running on that ++CPU to take up the bulk of its cache, how big the CPU cache is, how fast and ++how layered the CPU cache is, how fast a context switch is... and so on. In ++other words, it's close to random in the real world where we do more than just ++one sole workload. The only thing we can be sure of is that it's not free. So ++BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs ++is more important than cache locality, and cache locality only plays a part ++after that. Doubling the effective deadline is based on the premise that the ++"cache local" CPUs will tend to work on the same tasks up to double the number ++of cache local CPUs, and once the workload is beyond that amount, it is likely ++that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA ++is a value I pulled out of my arse. ++ ++When choosing an idle CPU for a waking task, the cache locality is determined ++according to where the task last ran and then idle CPUs are ranked from best ++to worst to choose the most suitable idle CPU based on cache locality, NUMA ++node locality and hyperthread sibling business. They are chosen in the ++following preference (if idle): ++ ++* Same core, idle or busy cache, idle threads ++* Other core, same cache, idle or busy cache, idle threads. ++* Same node, other CPU, idle cache, idle threads. ++* Same node, other CPU, busy cache, idle threads. ++* Same core, busy threads. ++* Other core, same cache, busy threads. ++* Same node, other CPU, busy threads. ++* Other node, other CPU, idle cache, idle threads. ++* Other node, other CPU, busy cache, idle threads. ++* Other node, other CPU, busy threads. ++ ++This shows the SMT or "hyperthread" awareness in the design as well which will ++choose a real idle core first before a logical SMT sibling which already has ++tasks on the physical CPU. ++ ++Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark. ++However this benchmarking was performed on an earlier design that was far less ++scalable than the current one so it's hard to know how scalable it is in terms ++of both CPUs (due to the global runqueue) and heavily loaded machines (due to ++O(n) lookup) at this stage. Note that in terms of scalability, the number of ++_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x) ++quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark ++results are very promising indeed, without needing to tweak any knobs, features ++or options. Benchmark contributions are most welcome. ++ ++ ++Features ++ ++As the initial prime target audience for BFS was the average desktop user, it ++was designed to not need tweaking, tuning or have features set to obtain benefit ++from it. Thus the number of knobs and features has been kept to an absolute ++minimum and should not require extra user input for the vast majority of cases. ++There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval ++and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition ++to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is ++support for CGROUPS. The average user should neither need to know what these ++are, nor should they need to be using them to have good desktop behaviour. ++ ++rr_interval ++ ++There is only one "scheduler" tunable, the round robin interval. This can be ++accessed in ++ ++ /proc/sys/kernel/rr_interval ++ ++The value is in milliseconds, and the default value is set to 6 on a ++uniprocessor machine, and automatically set to a progressively higher value on ++multiprocessor machines. The reasoning behind increasing the value on more CPUs ++is that the effective latency is decreased by virtue of there being more CPUs on ++BFS (for reasons explained above), and increasing the value allows for less ++cache contention and more throughput. Valid values are from 1 to 1000 ++Decreasing the value will decrease latencies at the cost of decreasing ++throughput, while increasing it will improve throughput, but at the cost of ++worsening latencies. The accuracy of the rr interval is limited by HZ resolution ++of the kernel configuration. Thus, the worst case latencies are usually slightly ++higher than this actual value. The default value of 6 is not an arbitrary one. ++It is based on the fact that humans can detect jitter at approximately 7ms, so ++aiming for much lower latencies is pointless under most circumstances. It is ++worth noting this fact when comparing the latency performance of BFS to other ++schedulers. Worst case latencies being higher than 7ms are far worse than ++average latencies not being in the microsecond range. ++ ++Isochronous scheduling. ++ ++Isochronous scheduling is a unique scheduling policy designed to provide ++near-real-time performance to unprivileged (ie non-root) users without the ++ability to starve the machine indefinitely. Isochronous tasks (which means ++"same time") are set using, for example, the schedtool application like so: ++ ++ schedtool -I -e amarok ++ ++This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works ++is that it has a priority level between true realtime tasks and SCHED_NORMAL ++which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie, ++if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval ++rate). However if ISO tasks run for more than a tunable finite amount of time, ++they are then demoted back to SCHED_NORMAL scheduling. This finite amount of ++time is the percentage of _total CPU_ available across the machine, configurable ++as a percentage in the following "resource handling" tunable (as opposed to a ++scheduler tunable): ++ ++ /proc/sys/kernel/iso_cpu ++ ++and is set to 70% by default. It is calculated over a rolling 5 second average ++Because it is the total CPU available, it means that on a multi CPU machine, it ++is possible to have an ISO task running as realtime scheduling indefinitely on ++just one CPU, as the other CPUs will be available. Setting this to 100 is the ++equivalent of giving all users SCHED_RR access and setting it to 0 removes the ++ability to run any pseudo-realtime tasks. ++ ++A feature of BFS is that it detects when an application tries to obtain a ++realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the ++appropriate privileges to use those policies. When it detects this, it will ++give the task SCHED_ISO policy instead. Thus it is transparent to the user. ++Because some applications constantly set their policy as well as their nice ++level, there is potential for them to undo the override specified by the user ++on the command line of setting the policy to SCHED_ISO. To counter this, once ++a task has been set to SCHED_ISO policy, it needs superuser privileges to set ++it back to SCHED_NORMAL. This will ensure the task remains ISO and all child ++processes and threads will also inherit the ISO policy. ++ ++Idleprio scheduling. ++ ++Idleprio scheduling is a scheduling policy designed to give out CPU to a task ++_only_ when the CPU would be otherwise idle. The idea behind this is to allow ++ultra low priority tasks to be run in the background that have virtually no ++effect on the foreground tasks. This is ideally suited to distributed computing ++clients (like setiathome, folding, mprime etc) but can also be used to start ++a video encode or so on without any slowdown of other tasks. To avoid this ++policy from grabbing shared resources and holding them indefinitely, if it ++detects a state where the task is waiting on I/O, the machine is about to ++suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As ++per the Isochronous task management, once a task has been scheduled as IDLEPRIO, ++it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can ++be set to start as SCHED_IDLEPRIO with the schedtool command like so: ++ ++ schedtool -D -e ./mprime ++ ++Subtick accounting. ++ ++It is surprisingly difficult to get accurate CPU accounting, and in many cases, ++the accounting is done by simply determining what is happening at the precise ++moment a timer tick fires off. This becomes increasingly inaccurate as the ++timer tick frequency (HZ) is lowered. It is possible to create an application ++which uses almost 100% CPU, yet by being descheduled at the right time, records ++zero CPU usage. While the main problem with this is that there are possible ++security implications, it is also difficult to determine how much CPU a task ++really does use. BFS tries to use the sub-tick accounting from the TSC clock, ++where possible, to determine real CPU usage. This is not entirely reliable, but ++is far more likely to produce accurate CPU usage data than the existing designs ++and will not show tasks as consuming no CPU usage when they actually are. Thus, ++the amount of CPU reported as being used by BFS will more accurately represent ++how much CPU the task itself is using (as is shown for example by the 'time' ++application), so the reported values may be quite different to other schedulers. ++Values reported as the 'load' are more prone to problems with this design, but ++per process values are closer to real usage. When comparing throughput of BFS ++to other designs, it is important to compare the actual completed work in terms ++of total wall clock time taken and total work done, rather than the reported ++"cpu usage". ++ ++ ++Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010 +Index: linux-2.6.37-ck2/Documentation/sysctl/kernel.txt +=================================================================== +--- linux-2.6.37-ck2.orig/Documentation/sysctl/kernel.txt 2011-01-06 14:04:07.000000000 +1100 ++++ linux-2.6.37-ck2/Documentation/sysctl/kernel.txt 2011-02-14 09:47:50.984252001 +1100 +@@ -32,6 +32,7 @@ + - domainname + - hostname + - hotplug ++- iso_cpu + - java-appletviewer [ binfmt_java, obsolete ] + - java-interpreter [ binfmt_java, obsolete ] + - kstack_depth_to_print [ X86 only ] +@@ -54,6 +55,7 @@ + - randomize_va_space + - real-root-dev ==> Documentation/initrd.txt + - reboot-cmd [ SPARC only ] ++- rr_interval + - rtsig-max + - rtsig-nr + - sem +@@ -254,6 +256,16 @@ + + ============================================================== + ++iso_cpu: (BFS CPU scheduler only). ++ ++This sets the percentage cpu that the unprivileged SCHED_ISO tasks can ++run effectively at realtime priority, averaged over a rolling five ++seconds over the -whole- system, meaning all cpus. ++ ++Set to 70 (percent) by default. ++ ++============================================================== ++ + l2cr: (PPC only) + + This flag controls the L2 cache of G3 processor boards. If +@@ -428,6 +440,20 @@ + + ============================================================== + ++rr_interval: (BFS CPU scheduler only) ++ ++This is the smallest duration that any cpu process scheduling unit ++will run for. Increasing this value can increase throughput of cpu ++bound tasks substantially but at the expense of increased latencies ++overall. Conversely decreasing it will decrease average and maximum ++latencies but at the expense of throughput. This value is in ++milliseconds and the default value chosen depends on the number of ++cpus available at scheduler initialisation with a minimum of 6. ++ ++Valid values are from 1-1000. ++ ++============================================================== ++ + rtsig-max & rtsig-nr: + + The file rtsig-max can be used to tune the maximum number +Index: linux-2.6.37-ck2/fs/proc/base.c +=================================================================== +--- linux-2.6.37-ck2.orig/fs/proc/base.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/fs/proc/base.c 2011-02-14 09:47:50.986252000 +1100 +@@ -356,7 +356,7 @@ + static int proc_pid_schedstat(struct task_struct *task, char *buffer) + { + return sprintf(buffer, "%llu %llu %lu\n", +- (unsigned long long)task->se.sum_exec_runtime, ++ (unsigned long long)tsk_seruntime(task), + (unsigned long long)task->sched_info.run_delay, + task->sched_info.pcount); + } +Index: linux-2.6.37-ck2/include/linux/init_task.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/init_task.h 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/include/linux/init_task.h 2011-02-14 09:47:50.986252001 +1100 +@@ -114,6 +114,67 @@ + * INIT_TASK is used to set up the first task table, touch at + * your own risk!. Base=0, limit=0x1fffff (=2MB) + */ ++#ifdef CONFIG_SCHED_BFS ++#define INIT_TASK(tsk) \ ++{ \ ++ .state = 0, \ ++ .stack = &init_thread_info, \ ++ .usage = ATOMIC_INIT(2), \ ++ .flags = PF_KTHREAD, \ ++ .lock_depth = -1, \ ++ .prio = NORMAL_PRIO, \ ++ .static_prio = MAX_PRIO-20, \ ++ .normal_prio = NORMAL_PRIO, \ ++ .deadline = 0, \ ++ .policy = SCHED_NORMAL, \ ++ .cpus_allowed = CPU_MASK_ALL, \ ++ .mm = NULL, \ ++ .active_mm = &init_mm, \ ++ .run_list = LIST_HEAD_INIT(tsk.run_list), \ ++ .time_slice = HZ, \ ++ .tasks = LIST_HEAD_INIT(tsk.tasks), \ ++ .pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \ ++ .ptraced = LIST_HEAD_INIT(tsk.ptraced), \ ++ .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \ ++ .real_parent = &tsk, \ ++ .parent = &tsk, \ ++ .children = LIST_HEAD_INIT(tsk.children), \ ++ .sibling = LIST_HEAD_INIT(tsk.sibling), \ ++ .group_leader = &tsk, \ ++ RCU_INIT_POINTER(.real_cred, &init_cred), \ ++ RCU_INIT_POINTER(.cred, &init_cred), \ ++ .comm = "swapper", \ ++ .thread = INIT_THREAD, \ ++ .fs = &init_fs, \ ++ .files = &init_files, \ ++ .signal = &init_signals, \ ++ .sighand = &init_sighand, \ ++ .nsproxy = &init_nsproxy, \ ++ .pending = { \ ++ .list = LIST_HEAD_INIT(tsk.pending.list), \ ++ .signal = {{0}}}, \ ++ .blocked = {{0}}, \ ++ .alloc_lock = __SPIN_LOCK_UNLOCKED(tsk.alloc_lock), \ ++ .journal_info = NULL, \ ++ .cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \ ++ .fs_excl = ATOMIC_INIT(0), \ ++ .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock), \ ++ .timer_slack_ns = 50000, /* 50 usec default slack */ \ ++ .pids = { \ ++ [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \ ++ [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \ ++ [PIDTYPE_SID] = INIT_PID_LINK(PIDTYPE_SID), \ ++ }, \ ++ .dirties = INIT_PROP_LOCAL_SINGLE(dirties), \ ++ INIT_IDS \ ++ INIT_PERF_EVENTS(tsk) \ ++ INIT_TRACE_IRQFLAGS \ ++ INIT_LOCKDEP \ ++ INIT_FTRACE_GRAPH \ ++ INIT_TRACE_RECURSION \ ++ INIT_TASK_RCU_PREEMPT(tsk) \ ++} ++#else /* CONFIG_SCHED_BFS */ + #define INIT_TASK(tsk) \ + { \ + .state = 0, \ +@@ -179,7 +240,7 @@ + INIT_TRACE_RECURSION \ + INIT_TASK_RCU_PREEMPT(tsk) \ + } +- ++#endif /* CONFIG_SCHED_BFS */ + + #define INIT_CPU_TIMERS(cpu_timers) \ + { \ +Index: linux-2.6.37-ck2/include/linux/ioprio.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/ioprio.h 2009-06-10 13:05:27.000000000 +1000 ++++ linux-2.6.37-ck2/include/linux/ioprio.h 2011-02-14 09:47:50.986252001 +1100 +@@ -64,6 +64,8 @@ + + static inline int task_nice_ioprio(struct task_struct *task) + { ++ if (iso_task(task)) ++ return 0; + return (task_nice(task) + 20) / 5; + } + +Index: linux-2.6.37-ck2/include/linux/sched.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/sched.h 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/include/linux/sched.h 2011-02-14 10:11:01.691252000 +1100 +@@ -36,8 +36,15 @@ + #define SCHED_FIFO 1 + #define SCHED_RR 2 + #define SCHED_BATCH 3 +-/* SCHED_ISO: reserved but not implemented yet */ ++/* SCHED_ISO: Implemented on BFS only */ + #define SCHED_IDLE 5 ++#define SCHED_IDLEPRIO SCHED_IDLE ++#ifdef CONFIG_SCHED_BFS ++#define SCHED_ISO 4 ++#define SCHED_MAX (SCHED_IDLEPRIO) ++#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX) ++#endif ++ + /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ + #define SCHED_RESET_ON_FORK 0x40000000 + +@@ -268,8 +275,6 @@ + extern void init_idle(struct task_struct *idle, int cpu); + extern void init_idle_bootup_task(struct task_struct *idle); + +-extern int runqueue_is_locked(int cpu); +- + extern cpumask_var_t nohz_cpu_mask; + #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) + extern void select_nohz_load_balancer(int stop_tick); +@@ -1188,17 +1193,31 @@ + + int lock_depth; /* BKL lock depth */ + ++#ifndef CONFIG_SCHED_BFS + #ifdef CONFIG_SMP + #ifdef __ARCH_WANT_UNLOCKED_CTXSW + int oncpu; + #endif + #endif ++#else /* CONFIG_SCHED_BFS */ ++ int oncpu; ++#endif + + int prio, static_prio, normal_prio; + unsigned int rt_priority; ++#ifdef CONFIG_SCHED_BFS ++ int time_slice; ++ u64 deadline; ++ struct list_head run_list; ++ u64 last_ran; ++ u64 sched_time; /* sched_clock time spent running */ ++ ++ unsigned long rt_timeout; ++#else /* CONFIG_SCHED_BFS */ + const struct sched_class *sched_class; + struct sched_entity se; + struct sched_rt_entity rt; ++#endif + + #ifdef CONFIG_PREEMPT_NOTIFIERS + /* list of struct preempt_notifier: */ +@@ -1295,6 +1314,9 @@ + int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ + + cputime_t utime, stime, utimescaled, stimescaled; ++#ifdef CONFIG_SCHED_BFS ++ unsigned long utime_pc, stime_pc; ++#endif + cputime_t gtime; + #ifndef CONFIG_VIRT_CPU_ACCOUNTING + cputime_t prev_utime, prev_stime; +@@ -1514,6 +1536,60 @@ + #endif + }; + ++#ifdef CONFIG_SCHED_BFS ++extern int grunqueue_is_locked(void); ++extern void grq_unlock_wait(void); ++#define tsk_seruntime(t) ((t)->sched_time) ++#define tsk_rttimeout(t) ((t)->rt_timeout) ++ ++static inline void tsk_cpus_current(struct task_struct *p) ++{ ++} ++ ++#define runqueue_is_locked(cpu) grunqueue_is_locked() ++ ++static inline void print_scheduler_version(void) ++{ ++ printk(KERN_INFO"BFS CPU scheduler v0.363 by Con Kolivas.\n"); ++} ++ ++static inline int iso_task(struct task_struct *p) ++{ ++ return (p->policy == SCHED_ISO); ++} ++extern void remove_cpu(unsigned long cpu); ++extern int above_background_load(void); ++#else /* CFS */ ++extern int runqueue_is_locked(int cpu); ++#define tsk_seruntime(t) ((t)->se.sum_exec_runtime) ++#define tsk_rttimeout(t) ((t)->rt.timeout) ++ ++static inline void tsk_cpus_current(struct task_struct *p) ++{ ++ p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; ++} ++ ++static inline void print_scheduler_version(void) ++{ ++ printk(KERN_INFO"CFS CPU scheduler.\n"); ++} ++ ++static inline int iso_task(struct task_struct *p) ++{ ++ return 0; ++} ++ ++static inline void remove_cpu(unsigned long cpu) ++{ ++} ++ ++/* Anyone feel like implementing this? */ ++static inline int above_background_load(void) ++{ ++ return 1; ++} ++#endif /* CONFIG_SCHED_BFS */ ++ + /* Future-safe accessor for struct task_struct's cpus_allowed. */ + #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) + +@@ -1531,10 +1607,20 @@ + */ + + #define MAX_USER_RT_PRIO 100 +-#define MAX_RT_PRIO MAX_USER_RT_PRIO ++#define MAX_RT_PRIO (MAX_USER_RT_PRIO + 1) ++#define DEFAULT_PRIO (MAX_RT_PRIO + 20) + ++#ifdef CONFIG_SCHED_BFS ++#define PRIO_RANGE (40) ++#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE) ++#define ISO_PRIO (MAX_RT_PRIO) ++#define NORMAL_PRIO (MAX_RT_PRIO + 1) ++#define IDLE_PRIO (MAX_RT_PRIO + 2) ++#define PRIO_LIMIT ((IDLE_PRIO) + 1) ++#else /* CONFIG_SCHED_BFS */ + #define MAX_PRIO (MAX_RT_PRIO + 40) +-#define DEFAULT_PRIO (MAX_RT_PRIO + 20) ++#define NORMAL_PRIO DEFAULT_PRIO ++#endif /* CONFIG_SCHED_BFS */ + + static inline int rt_prio(int prio) + { +@@ -1862,7 +1948,7 @@ + extern unsigned long long thread_group_sched_runtime(struct task_struct *task); + + /* sched_exec is called by processes performing an exec */ +-#ifdef CONFIG_SMP ++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_BFS) + extern void sched_exec(void); + #else + #define sched_exec() {} +Index: linux-2.6.37-ck2/init/Kconfig +=================================================================== +--- linux-2.6.37-ck2.orig/init/Kconfig 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/init/Kconfig 2011-02-14 09:47:50.988252001 +1100 +@@ -30,6 +30,19 @@ + + menu "General setup" + ++config SCHED_BFS ++ bool "BFS cpu scheduler" ++ ---help--- ++ The Brain Fuck CPU Scheduler for excellent interactivity and ++ responsiveness on the desktop and solid scalability on normal ++ hardware. Not recommended for 4096 CPUs. ++ ++ Currently incompatible with the Group CPU scheduler, and RCU TORTURE ++ TEST so these options are disabled. ++ ++ Say Y here. ++ default y ++ + config EXPERIMENTAL + bool "Prompt for development and/or incomplete code/drivers" + ---help--- +@@ -563,6 +576,7 @@ + + config CGROUP_CPUACCT + bool "Simple CPU accounting cgroup subsystem" ++ depends on !SCHED_BFS + help + Provides a simple Resource Controller for monitoring the + total CPU consumed by the tasks in a cgroup. +@@ -629,7 +643,7 @@ + + menuconfig CGROUP_SCHED + bool "Group CPU scheduler" +- depends on EXPERIMENTAL ++ depends on EXPERIMENTAL && !SCHED_BFS + default n + help + This feature lets CPU scheduler recognize task groups and control CPU +Index: linux-2.6.37-ck2/init/main.c +=================================================================== +--- linux-2.6.37-ck2.orig/init/main.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/init/main.c 2011-02-14 09:47:50.989252001 +1100 +@@ -824,6 +824,7 @@ + system_state = SYSTEM_RUNNING; + numa_default_policy(); + ++ print_scheduler_version(); + + current->signal->flags |= SIGNAL_UNKILLABLE; + +Index: linux-2.6.37-ck2/kernel/delayacct.c +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/delayacct.c 2009-12-03 21:40:09.000000000 +1100 ++++ linux-2.6.37-ck2/kernel/delayacct.c 2011-02-14 09:47:50.989252001 +1100 +@@ -128,7 +128,7 @@ + */ + t1 = tsk->sched_info.pcount; + t2 = tsk->sched_info.run_delay; +- t3 = tsk->se.sum_exec_runtime; ++ t3 = tsk_seruntime(tsk); + + d->cpu_count += t1; + +Index: linux-2.6.37-ck2/kernel/exit.c +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/exit.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/kernel/exit.c 2011-02-14 09:47:50.989252001 +1100 +@@ -132,7 +132,7 @@ + sig->inblock += task_io_get_inblock(tsk); + sig->oublock += task_io_get_oublock(tsk); + task_io_accounting_add(&sig->ioac, &tsk->ioac); +- sig->sum_sched_runtime += tsk->se.sum_exec_runtime; ++ sig->sum_sched_runtime += tsk_seruntime(tsk); + } + + sig->nr_threads--; +Index: linux-2.6.37-ck2/kernel/kthread.c +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/kthread.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/kernel/kthread.c 2011-02-14 09:47:50.989252001 +1100 +@@ -184,7 +184,9 @@ + } + + p->cpus_allowed = cpumask_of_cpu(cpu); ++#ifndef CONFIG_SCHED_BFS + p->rt.nr_cpus_allowed = 1; ++#endif + p->flags |= PF_THREAD_BOUND; + } + EXPORT_SYMBOL(kthread_bind); +Index: linux-2.6.37-ck2/kernel/posix-cpu-timers.c +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/posix-cpu-timers.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/kernel/posix-cpu-timers.c 2011-02-14 09:47:50.990252001 +1100 +@@ -248,7 +248,7 @@ + do { + times->utime = cputime_add(times->utime, t->utime); + times->stime = cputime_add(times->stime, t->stime); +- times->sum_exec_runtime += t->se.sum_exec_runtime; ++ times->sum_exec_runtime += tsk_seruntime(t); + } while_each_thread(tsk, t); + out: + rcu_read_unlock(); +@@ -508,7 +508,7 @@ + void posix_cpu_timers_exit(struct task_struct *tsk) + { + cleanup_timers(tsk->cpu_timers, +- tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); ++ tsk->utime, tsk->stime, tsk_seruntime(tsk)); + + } + void posix_cpu_timers_exit_group(struct task_struct *tsk) +@@ -518,7 +518,7 @@ + cleanup_timers(tsk->signal->cpu_timers, + cputime_add(tsk->utime, sig->utime), + cputime_add(tsk->stime, sig->stime), +- tsk->se.sum_exec_runtime + sig->sum_sched_runtime); ++ tsk_seruntime(tsk) + sig->sum_sched_runtime); + } + + static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) +@@ -949,7 +949,7 @@ + struct cpu_timer_list *t = list_first_entry(timers, + struct cpu_timer_list, + entry); +- if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { ++ if (!--maxfire || tsk_seruntime(tsk) < t->expires.sched) { + tsk->cputime_expires.sched_exp = t->expires.sched; + break; + } +@@ -966,7 +966,7 @@ + ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); + + if (hard != RLIM_INFINITY && +- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { ++ tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { + /* + * At the hard limit, we just die. + * No need to calculate anything else now. +@@ -974,7 +974,7 @@ + __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); + return; + } +- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { ++ if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { + /* + * At the soft limit, send a SIGXCPU every second. + */ +@@ -1276,7 +1276,7 @@ + struct task_cputime task_sample = { + .utime = tsk->utime, + .stime = tsk->stime, +- .sum_exec_runtime = tsk->se.sum_exec_runtime ++ .sum_exec_runtime = tsk_seruntime(tsk) + }; + + if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) +Index: linux-2.6.37-ck2/kernel/sched_bfs.c +=================================================================== +--- /dev/null 1970-01-01 00:00:00.000000000 +0000 ++++ linux-2.6.37-ck2/kernel/sched_bfs.c 2011-02-14 10:11:00.294252001 +1100 +@@ -0,0 +1,7243 @@ ++/* ++ * kernel/sched_bfs.c, was sched.c ++ * ++ * Kernel scheduler and related syscalls ++ * ++ * Copyright (C) 1991-2002 Linus Torvalds ++ * ++ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and ++ * make semaphores SMP safe ++ * 1998-11-19 Implemented schedule_timeout() and related stuff ++ * by Andrea Arcangeli ++ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: ++ * hybrid priority-list and round-robin design with ++ * an array-switch method of distributing timeslices ++ * and per-CPU runqueues. Cleanups and useful suggestions ++ * by Davide Libenzi, preemptible kernel bits by Robert Love. ++ * 2003-09-03 Interactivity tuning by Con Kolivas. ++ * 2004-04-02 Scheduler domains code by Nick Piggin ++ * 2007-04-15 Work begun on replacing all interactivity tuning with a ++ * fair scheduling design by Con Kolivas. ++ * 2007-05-05 Load balancing (smp-nice) and other improvements ++ * by Peter Williams ++ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith ++ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri ++ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, ++ * Thomas Gleixner, Mike Kravetz ++ * now Brainfuck deadline scheduling policy by Con Kolivas deletes ++ * a whole lot of those previous things. ++ */ ++ ++#include <linux/mm.h> ++#include <linux/module.h> ++#include <linux/nmi.h> ++#include <linux/init.h> ++#include <asm/uaccess.h> ++#include <linux/highmem.h> ++#include <linux/smp_lock.h> ++#include <asm/mmu_context.h> ++#include <linux/interrupt.h> ++#include <linux/capability.h> ++#include <linux/completion.h> ++#include <linux/kernel_stat.h> ++#include <linux/debug_locks.h> ++#include <linux/perf_event.h> ++#include <linux/security.h> ++#include <linux/notifier.h> ++#include <linux/profile.h> ++#include <linux/freezer.h> ++#include <linux/vmalloc.h> ++#include <linux/blkdev.h> ++#include <linux/delay.h> ++#include <linux/smp.h> ++#include <linux/threads.h> ++#include <linux/timer.h> ++#include <linux/rcupdate.h> ++#include <linux/cpu.h> ++#include <linux/cpuset.h> ++#include <linux/cpumask.h> ++#include <linux/percpu.h> ++#include <linux/proc_fs.h> ++#include <linux/seq_file.h> ++#include <linux/syscalls.h> ++#include <linux/times.h> ++#include <linux/tsacct_kern.h> ++#include <linux/kprobes.h> ++#include <linux/delayacct.h> ++#include <linux/log2.h> ++#include <linux/bootmem.h> ++#include <linux/ftrace.h> ++#include <linux/slab.h> ++ ++#include <asm/tlb.h> ++#include <asm/unistd.h> ++ ++#include "sched_cpupri.h" ++#include "workqueue_sched.h" ++ ++#define CREATE_TRACE_POINTS ++#include <trace/events/sched.h> ++ ++#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) ++#define rt_task(p) rt_prio((p)->prio) ++#define rt_queue(rq) rt_prio((rq)->rq_prio) ++#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) ++#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \ ++ (policy) == SCHED_RR) ++#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) ++#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLEPRIO) ++#define iso_task(p) unlikely((p)->policy == SCHED_ISO) ++#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO) ++#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1) ++ ++/* ++ * Convert user-nice values [ -20 ... 0 ... 19 ] ++ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], ++ * and back. ++ */ ++#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) ++#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) ++#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) ++ ++/* ++ * 'User priority' is the nice value converted to something we ++ * can work with better when scaling various scheduler parameters, ++ * it's a [ 0 ... 39 ] range. ++ */ ++#define USER_PRIO(p) ((p) - MAX_RT_PRIO) ++#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) ++#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) ++#define SCHED_PRIO(p) ((p) + MAX_RT_PRIO) ++#define STOP_PRIO (MAX_RT_PRIO - 1) ++ ++/* ++ * Some helpers for converting to/from various scales. Use shifts to get ++ * approximate multiples of ten for less overhead. ++ */ ++#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) ++#define JIFFY_NS (1000000000 / HZ) ++#define HALF_JIFFY_NS (1000000000 / HZ / 2) ++#define HALF_JIFFY_US (1000000 / HZ / 2) ++#define MS_TO_NS(TIME) ((TIME) << 20) ++#define MS_TO_US(TIME) ((TIME) << 10) ++#define NS_TO_MS(TIME) ((TIME) >> 20) ++#define NS_TO_US(TIME) ((TIME) >> 10) ++ ++#define RESCHED_US (100) /* Reschedule if less than this many μs left */ ++ ++/* ++ * This is the time all tasks within the same priority round robin. ++ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus. ++ * Tunable via /proc interface. ++ */ ++int rr_interval __read_mostly = 6; ++ ++/* ++ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks ++ * are allowed to run five seconds as real time tasks. This is the total over ++ * all online cpus. ++ */ ++int sched_iso_cpu __read_mostly = 70; ++ ++/* ++ * The relative length of deadline for each priority(nice) level. ++ */ ++static int prio_ratios[PRIO_RANGE] __read_mostly; ++ ++/* ++ * The quota handed out to tasks of all priority levels when refilling their ++ * time_slice. ++ */ ++static inline unsigned long timeslice(void) ++{ ++ return MS_TO_US(rr_interval); ++} ++ ++/* ++ * The global runqueue data that all CPUs work off. Data is protected either ++ * by the global grq lock, or the discrete lock that precedes the data in this ++ * struct. ++ */ ++struct global_rq { ++ raw_spinlock_t lock; ++ unsigned long nr_running; ++ unsigned long nr_uninterruptible; ++ unsigned long long nr_switches; ++ struct list_head queue[PRIO_LIMIT]; ++ DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1); ++#ifdef CONFIG_SMP ++ unsigned long qnr; /* queued not running */ ++ cpumask_t cpu_idle_map; ++ int idle_cpus; ++#endif ++ u64 niffies; /* Nanosecond jiffies */ ++ unsigned long last_jiffy; /* Last jiffy we updated niffies */ ++ ++ raw_spinlock_t iso_lock; ++ int iso_ticks; ++ int iso_refractory; ++}; ++ ++/* There can be only one */ ++static struct global_rq grq; ++ ++/* ++ * This is the main, per-CPU runqueue data structure. ++ * This data should only be modified by the local cpu. ++ */ ++struct rq { ++#ifdef CONFIG_SMP ++#ifdef CONFIG_NO_HZ ++ u64 nohz_stamp; ++ unsigned char in_nohz_recently; ++#endif ++#endif ++ ++ struct task_struct *curr, *idle, *stop; ++ struct mm_struct *prev_mm; ++ ++ /* Stored data about rq->curr to work outside grq lock */ ++ u64 rq_deadline; ++ unsigned int rq_policy; ++ int rq_time_slice; ++ u64 rq_last_ran; ++ int rq_prio; ++ int rq_running; /* There is a task running */ ++ ++ /* Accurate timekeeping data */ ++ u64 timekeep_clock; ++ unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc, ++ iowait_pc, idle_pc; ++ atomic_t nr_iowait; ++ ++#ifdef CONFIG_SMP ++ int cpu; /* cpu of this runqueue */ ++ int online; ++ ++ struct root_domain *rd; ++ struct sched_domain *sd; ++ unsigned long *cpu_locality; /* CPU relative cache distance */ ++#ifdef CONFIG_SCHED_SMT ++ int (*siblings_idle)(unsigned long cpu); ++ /* See if all smt siblings are idle */ ++ cpumask_t smt_siblings; ++#endif ++#ifdef CONFIG_SCHED_MC ++ int (*cache_idle)(unsigned long cpu); ++ /* See if all cache siblings are idle */ ++ cpumask_t cache_siblings; ++#endif ++ u64 last_niffy; /* Last time this RQ updated grq.niffies */ ++#endif ++#ifdef CONFIG_IRQ_TIME_ACCOUNTING ++ u64 prev_irq_time; ++#endif ++ u64 clock, old_clock, last_tick; ++ u64 clock_task; ++ int dither; ++ ++#ifdef CONFIG_SCHEDSTATS ++ ++ /* latency stats */ ++ struct sched_info rq_sched_info; ++ unsigned long long rq_cpu_time; ++ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ ++ ++ /* sys_sched_yield() stats */ ++ unsigned int yld_count; ++ ++ /* schedule() stats */ ++ unsigned int sched_switch; ++ unsigned int sched_count; ++ unsigned int sched_goidle; ++ ++ /* try_to_wake_up() stats */ ++ unsigned int ttwu_count; ++ unsigned int ttwu_local; ++ ++ /* BKL stats */ ++ unsigned int bkl_count; ++#endif ++}; ++ ++static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp; ++static DEFINE_MUTEX(sched_hotcpu_mutex); ++ ++#ifdef CONFIG_SMP ++/* ++ * sched_domains_mutex serializes calls to arch_init_sched_domains, ++ * detach_destroy_domains and partition_sched_domains. ++ */ ++static DEFINE_MUTEX(sched_domains_mutex); ++ ++/* ++ * By default the system creates a single root-domain with all cpus as ++ * members (mimicking the global state we have today). ++ */ ++static struct root_domain def_root_domain; ++ ++int __weak arch_sd_sibling_asym_packing(void) ++{ ++ return 0*SD_ASYM_PACKING; ++} ++#endif ++ ++/* ++ * We add the notion of a root-domain which will be used to define per-domain ++ * variables. Each exclusive cpuset essentially defines an island domain by ++ * fully partitioning the member cpus from any other cpuset. Whenever a new ++ * exclusive cpuset is created, we also create and attach a new root-domain ++ * object. ++ * ++ */ ++struct root_domain { ++ atomic_t refcount; ++ cpumask_var_t span; ++ cpumask_var_t online; ++ ++ /* ++ * The "RT overload" flag: it gets set if a CPU has more than ++ * one runnable RT task. ++ */ ++ cpumask_var_t rto_mask; ++ atomic_t rto_count; ++#ifdef CONFIG_SMP ++ struct cpupri cpupri; ++#endif ++}; ++ ++#define rcu_dereference_check_sched_domain(p) \ ++ rcu_dereference_check((p), \ ++ rcu_read_lock_sched_held() || \ ++ lockdep_is_held(&sched_domains_mutex)) ++ ++/* ++ * The domain tree (rq->sd) is protected by RCU's quiescent state transition. ++ * See detach_destroy_domains: synchronize_sched for details. ++ * ++ * The domain tree of any CPU may only be accessed from within ++ * preempt-disabled sections. ++ */ ++#define for_each_domain(cpu, __sd) \ ++ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) ++ ++static inline void update_rq_clock(struct rq *rq); ++ ++/* ++ * Sanity check should sched_clock return bogus values. We make sure it does ++ * not appear to go backwards, and use jiffies to determine the maximum and ++ * minimum it could possibly have increased, and round down to the nearest ++ * jiffy when it falls outside this. ++ */ ++static inline void niffy_diff(s64 *niff_diff, int jiff_diff) ++{ ++ unsigned long min_diff, max_diff; ++ ++ if (jiff_diff > 1) ++ min_diff = JIFFIES_TO_NS(jiff_diff - 1); ++ else ++ min_diff = 1; ++ /* Round up to the nearest tick for maximum */ ++ max_diff = JIFFIES_TO_NS(jiff_diff + 1); ++ ++ if (unlikely(*niff_diff < min_diff || *niff_diff > max_diff)) ++ *niff_diff = min_diff; ++} ++ ++#ifdef CONFIG_SMP ++#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) ++#define this_rq() (&__get_cpu_var(runqueues)) ++#define task_rq(p) cpu_rq(task_cpu(p)) ++#define cpu_curr(cpu) (cpu_rq(cpu)->curr) ++static inline int cpu_of(struct rq *rq) ++{ ++ return rq->cpu; ++} ++ ++/* ++ * Niffies are a globally increasing nanosecond counter. Whenever a runqueue ++ * clock is updated with the grq.lock held, it is an opportunity to update the ++ * niffies value. Any CPU can update it by adding how much its clock has ++ * increased since it last updated niffies, minus any added niffies by other ++ * CPUs. ++ */ ++static inline void update_clocks(struct rq *rq) ++{ ++ s64 ndiff; ++ long jdiff; ++ ++ update_rq_clock(rq); ++ ndiff = rq->clock - rq->old_clock; ++ /* old_clock is only updated when we are updating niffies */ ++ rq->old_clock = rq->clock; ++ ndiff -= grq.niffies - rq->last_niffy; ++ jdiff = jiffies - grq.last_jiffy; ++ niffy_diff(&ndiff, jdiff); ++ grq.last_jiffy += jdiff; ++ grq.niffies += ndiff; ++ rq->last_niffy = grq.niffies; ++} ++#else /* CONFIG_SMP */ ++static struct rq *uprq; ++#define cpu_rq(cpu) (uprq) ++#define this_rq() (uprq) ++#define task_rq(p) (uprq) ++#define cpu_curr(cpu) ((uprq)->curr) ++static inline int cpu_of(struct rq *rq) ++{ ++ return 0; ++} ++ ++static inline void update_clocks(struct rq *rq) ++{ ++ s64 ndiff; ++ long jdiff; ++ ++ update_rq_clock(rq); ++ ndiff = rq->clock - rq->old_clock; ++ rq->old_clock = rq->clock; ++ jdiff = jiffies - grq.last_jiffy; ++ niffy_diff(&ndiff, jdiff); ++ grq.last_jiffy += jdiff; ++ grq.niffies += ndiff; ++} ++#endif ++#define raw_rq() (&__raw_get_cpu_var(runqueues)) ++ ++#include "sched_stats.h" ++ ++#ifndef prepare_arch_switch ++# define prepare_arch_switch(next) do { } while (0) ++#endif ++#ifndef finish_arch_switch ++# define finish_arch_switch(prev) do { } while (0) ++#endif ++ ++/* ++ * All common locking functions performed on grq.lock. rq->clock is local to ++ * the CPU accessing it so it can be modified just with interrupts disabled ++ * when we're not updating niffies. ++ * Looking up task_rq must be done under grq.lock to be safe. ++ */ ++static void update_rq_clock_task(struct rq *rq, s64 delta); ++ ++static inline void update_rq_clock(struct rq *rq) ++{ ++ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; ++ ++ rq->clock += delta; ++ update_rq_clock_task(rq, delta); ++} ++ ++static inline int task_running(struct task_struct *p) ++{ ++ return p->oncpu; ++} ++ ++static inline void grq_lock(void) ++ __acquires(grq.lock) ++{ ++ raw_spin_lock(&grq.lock); ++} ++ ++static inline void grq_unlock(void) ++ __releases(grq.lock) ++{ ++ raw_spin_unlock(&grq.lock); ++} ++ ++static inline void grq_lock_irq(void) ++ __acquires(grq.lock) ++{ ++ raw_spin_lock_irq(&grq.lock); ++} ++ ++static inline void time_lock_grq(struct rq *rq) ++ __acquires(grq.lock) ++{ ++ grq_lock(); ++ update_clocks(rq); ++} ++ ++static inline void grq_unlock_irq(void) ++ __releases(grq.lock) ++{ ++ raw_spin_unlock_irq(&grq.lock); ++} ++ ++static inline void grq_lock_irqsave(unsigned long *flags) ++ __acquires(grq.lock) ++{ ++ raw_spin_lock_irqsave(&grq.lock, *flags); ++} ++ ++static inline void grq_unlock_irqrestore(unsigned long *flags) ++ __releases(grq.lock) ++{ ++ raw_spin_unlock_irqrestore(&grq.lock, *flags); ++} ++ ++static inline struct rq ++*task_grq_lock(struct task_struct *p, unsigned long *flags) ++ __acquires(grq.lock) ++{ ++ grq_lock_irqsave(flags); ++ return task_rq(p); ++} ++ ++static inline struct rq ++*time_task_grq_lock(struct task_struct *p, unsigned long *flags) ++ __acquires(grq.lock) ++{ ++ struct rq *rq = task_grq_lock(p, flags); ++ update_clocks(rq); ++ return rq; ++} ++ ++static inline struct rq *task_grq_lock_irq(struct task_struct *p) ++ __acquires(grq.lock) ++{ ++ grq_lock_irq(); ++ return task_rq(p); ++} ++ ++static inline void time_task_grq_lock_irq(struct task_struct *p) ++ __acquires(grq.lock) ++{ ++ struct rq *rq = task_grq_lock_irq(p); ++ update_clocks(rq); ++} ++ ++static inline void task_grq_unlock_irq(void) ++ __releases(grq.lock) ++{ ++ grq_unlock_irq(); ++} ++ ++static inline void task_grq_unlock(unsigned long *flags) ++ __releases(grq.lock) ++{ ++ grq_unlock_irqrestore(flags); ++} ++ ++/** ++ * grunqueue_is_locked ++ * ++ * Returns true if the global runqueue is locked. ++ * This interface allows printk to be called with the runqueue lock ++ * held and know whether or not it is OK to wake up the klogd. ++ */ ++inline int grunqueue_is_locked(void) ++{ ++ return raw_spin_is_locked(&grq.lock); ++} ++ ++inline void grq_unlock_wait(void) ++ __releases(grq.lock) ++{ ++ smp_mb(); /* spin-unlock-wait is not a full memory barrier */ ++ raw_spin_unlock_wait(&grq.lock); ++} ++ ++static inline void time_grq_lock(struct rq *rq, unsigned long *flags) ++ __acquires(grq.lock) ++{ ++ local_irq_save(*flags); ++ time_lock_grq(rq); ++} ++ ++static inline struct rq *__task_grq_lock(struct task_struct *p) ++ __acquires(grq.lock) ++{ ++ grq_lock(); ++ return task_rq(p); ++} ++ ++static inline void __task_grq_unlock(void) ++ __releases(grq.lock) ++{ ++ grq_unlock(); ++} ++ ++/* ++ * Look for any tasks *anywhere* that are running nice 0 or better. We do ++ * this lockless for overhead reasons since the occasional wrong result ++ * is harmless. ++ */ ++int above_background_load(void) ++{ ++ struct task_struct *cpu_curr; ++ unsigned long cpu; ++ ++ for_each_online_cpu(cpu) { ++ cpu_curr = cpu_rq(cpu)->curr; ++ if (unlikely(!cpu_curr)) ++ continue; ++ if (PRIO_TO_NICE(cpu_curr->static_prio) < 1) ++ return 1; ++ } ++ return 0; ++} ++ ++#ifndef __ARCH_WANT_UNLOCKED_CTXSW ++static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) ++{ ++} ++ ++static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) ++{ ++#ifdef CONFIG_DEBUG_SPINLOCK ++ /* this is a valid case when another task releases the spinlock */ ++ grq.lock.owner = current; ++#endif ++ /* ++ * If we are tracking spinlock dependencies then we have to ++ * fix up the runqueue lock - which gets 'carried over' from ++ * prev into current: ++ */ ++ spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_); ++ ++ grq_unlock_irq(); ++} ++ ++#else /* __ARCH_WANT_UNLOCKED_CTXSW */ ++ ++static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) ++{ ++#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW ++ grq_unlock_irq(); ++#else ++ grq_unlock(); ++#endif ++} ++ ++static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) ++{ ++ smp_wmb(); ++#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW ++ local_irq_enable(); ++#endif ++} ++#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ ++ ++static inline int deadline_before(u64 deadline, u64 time) ++{ ++ return (deadline < time); ++} ++ ++static inline int deadline_after(u64 deadline, u64 time) ++{ ++ return (deadline > time); ++} ++ ++/* ++ * A task that is queued but not running will be on the grq run list. ++ * A task that is not running or queued will not be on the grq run list. ++ * A task that is currently running will have ->oncpu set but not on the ++ * grq run list. ++ */ ++static inline int task_queued(struct task_struct *p) ++{ ++ return (!list_empty(&p->run_list)); ++} ++ ++/* ++ * Removing from the global runqueue. Enter with grq locked. ++ */ ++static void dequeue_task(struct task_struct *p) ++{ ++ list_del_init(&p->run_list); ++ if (list_empty(grq.queue + p->prio)) ++ __clear_bit(p->prio, grq.prio_bitmap); ++} ++ ++/* ++ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as ++ * an idle task, we ensure none of the following conditions are met. ++ */ ++static int idleprio_suitable(struct task_struct *p) ++{ ++ return (!freezing(p) && !signal_pending(p) && ++ !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING))); ++} ++ ++/* ++ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check ++ * that the iso_refractory flag is not set. ++ */ ++static int isoprio_suitable(void) ++{ ++ return !grq.iso_refractory; ++} ++ ++/* ++ * Adding to the global runqueue. Enter with grq locked. ++ */ ++static void enqueue_task(struct task_struct *p) ++{ ++ if (!rt_task(p)) { ++ /* Check it hasn't gotten rt from PI */ ++ if ((idleprio_task(p) && idleprio_suitable(p)) || ++ (iso_task(p) && isoprio_suitable())) ++ p->prio = p->normal_prio; ++ else ++ p->prio = NORMAL_PRIO; ++ } ++ __set_bit(p->prio, grq.prio_bitmap); ++ list_add_tail(&p->run_list, grq.queue + p->prio); ++ sched_info_queued(p); ++} ++ ++/* Only idle task does this as a real time task*/ ++static inline void enqueue_task_head(struct task_struct *p) ++{ ++ __set_bit(p->prio, grq.prio_bitmap); ++ list_add(&p->run_list, grq.queue + p->prio); ++ sched_info_queued(p); ++} ++ ++static inline void requeue_task(struct task_struct *p) ++{ ++ sched_info_queued(p); ++} ++ ++/* ++ * Returns the relative length of deadline all compared to the shortest ++ * deadline which is that of nice -20. ++ */ ++static inline int task_prio_ratio(struct task_struct *p) ++{ ++ return prio_ratios[TASK_USER_PRIO(p)]; ++} ++ ++/* ++ * task_timeslice - all tasks of all priorities get the exact same timeslice ++ * length. CPU distribution is handled by giving different deadlines to ++ * tasks of different priorities. Use 128 as the base value for fast shifts. ++ */ ++static inline int task_timeslice(struct task_struct *p) ++{ ++ return (rr_interval * task_prio_ratio(p) / 128); ++} ++ ++#ifdef CONFIG_SMP ++/* ++ * qnr is the "queued but not running" count which is the total number of ++ * tasks on the global runqueue list waiting for cpu time but not actually ++ * currently running on a cpu. ++ */ ++static inline void inc_qnr(void) ++{ ++ grq.qnr++; ++} ++ ++static inline void dec_qnr(void) ++{ ++ grq.qnr--; ++} ++ ++static inline int queued_notrunning(void) ++{ ++ return grq.qnr; ++} ++ ++/* ++ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to ++ * allow easy lookup of whether any suitable idle CPUs are available. ++ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the ++ * idle_cpus variable than to do a full bitmask check when we are busy. ++ */ ++static inline void set_cpuidle_map(unsigned long cpu) ++{ ++ if (likely(cpu_online(cpu))) { ++ cpu_set(cpu, grq.cpu_idle_map); ++ grq.idle_cpus = 1; ++ } ++} ++ ++static inline void clear_cpuidle_map(unsigned long cpu) ++{ ++ cpu_clear(cpu, grq.cpu_idle_map); ++ if (cpus_empty(grq.cpu_idle_map)) ++ grq.idle_cpus = 0; ++} ++ ++static int suitable_idle_cpus(struct task_struct *p) ++{ ++ if (!grq.idle_cpus) ++ return 0; ++ return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map)); ++} ++ ++static void resched_task(struct task_struct *p); ++ ++#define CPUIDLE_DIFF_THREAD (1) ++#define CPUIDLE_DIFF_CORE (2) ++#define CPUIDLE_CACHE_BUSY (4) ++#define CPUIDLE_DIFF_CPU (8) ++#define CPUIDLE_THREAD_BUSY (16) ++#define CPUIDLE_DIFF_NODE (32) ++ ++/* ++ * The best idle CPU is chosen according to the CPUIDLE ranking above where the ++ * lowest value would give the most suitable CPU to schedule p onto next. We ++ * iterate from the last CPU upwards instead of using for_each_cpu_mask so as ++ * to be able to break out immediately if the last CPU is idle. The order works ++ * out to be the following: ++ * ++ * Same core, idle or busy cache, idle threads ++ * Other core, same cache, idle or busy cache, idle threads. ++ * Same node, other CPU, idle cache, idle threads. ++ * Same node, other CPU, busy cache, idle threads. ++ * Same core, busy threads. ++ * Other core, same cache, busy threads. ++ * Same node, other CPU, busy threads. ++ * Other node, other CPU, idle cache, idle threads. ++ * Other node, other CPU, busy cache, idle threads. ++ * Other node, other CPU, busy threads. ++ * ++ * If p was the last task running on this rq, then regardless of where ++ * it has been running since then, it is cache warm on this rq. ++ */ ++static void resched_best_idle(struct task_struct *p) ++{ ++ unsigned long cpu_tmp, best_cpu, best_ranking; ++ cpumask_t tmpmask; ++ struct rq *rq; ++ int iterate; ++ ++ cpus_and(tmpmask, p->cpus_allowed, grq.cpu_idle_map); ++ iterate = cpus_weight(tmpmask); ++ best_cpu = task_cpu(p); ++ /* ++ * Start below the last CPU and work up with next_cpu as the last ++ * CPU might not be idle or affinity might not allow it. ++ */ ++ cpu_tmp = best_cpu - 1; ++ rq = cpu_rq(best_cpu); ++ best_ranking = ~0UL; ++ ++ do { ++ unsigned long ranking; ++ struct rq *tmp_rq; ++ ++ ranking = 0; ++ cpu_tmp = next_cpu(cpu_tmp, tmpmask); ++ if (cpu_tmp >= nr_cpu_ids) { ++ cpu_tmp = -1; ++ cpu_tmp = next_cpu(cpu_tmp, tmpmask); ++ } ++ tmp_rq = cpu_rq(cpu_tmp); ++ ++#ifdef CONFIG_NUMA ++ if (rq->cpu_locality[cpu_tmp] > 3) ++ ranking |= CPUIDLE_DIFF_NODE; ++ else ++#endif ++ if (rq->cpu_locality[cpu_tmp] > 2) ++ ranking |= CPUIDLE_DIFF_CPU; ++#ifdef CONFIG_SCHED_MC ++ if (rq->cpu_locality[cpu_tmp] == 2) ++ ranking |= CPUIDLE_DIFF_CORE; ++ if (!(tmp_rq->cache_idle(cpu_tmp))) ++ ranking |= CPUIDLE_CACHE_BUSY; ++#endif ++#ifdef CONFIG_SCHED_SMT ++ if (rq->cpu_locality[cpu_tmp] == 1) ++ ranking |= CPUIDLE_DIFF_THREAD; ++ if (!(tmp_rq->siblings_idle(cpu_tmp))) ++ ranking |= CPUIDLE_THREAD_BUSY; ++#endif ++ if (ranking < best_ranking) { ++ best_cpu = cpu_tmp; ++ if (ranking == 0) ++ break; ++ best_ranking = ranking; ++ } ++ } while (--iterate > 0); ++ ++ resched_task(cpu_rq(best_cpu)->curr); ++} ++ ++static inline void resched_suitable_idle(struct task_struct *p) ++{ ++ if (suitable_idle_cpus(p)) ++ resched_best_idle(p); ++} ++ ++/* ++ * The cpu cache locality difference between CPUs is used to determine how far ++ * to offset the virtual deadline. <2 difference in locality means that one ++ * timeslice difference is allowed longer for the cpu local tasks. This is ++ * enough in the common case when tasks are up to 2* number of CPUs to keep ++ * tasks within their shared cache CPUs only. CPUs on different nodes or not ++ * even in this domain (NUMA) have "4" difference, allowing 4 times longer ++ * deadlines before being taken onto another cpu, allowing for 2* the double ++ * seen by separate CPUs above. ++ * Simple summary: Virtual deadlines are equal on shared cache CPUs, double ++ * on separate CPUs and quadruple in separate NUMA nodes. ++ */ ++static inline int ++cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p) ++{ ++ int locality = rq->cpu_locality[cpu_of(task_rq)] - 2; ++ ++ if (locality > 0) ++ return task_timeslice(p) << locality; ++ return 0; ++} ++#else /* CONFIG_SMP */ ++static inline void inc_qnr(void) ++{ ++} ++ ++static inline void dec_qnr(void) ++{ ++} ++ ++static inline int queued_notrunning(void) ++{ ++ return grq.nr_running; ++} ++ ++static inline void set_cpuidle_map(unsigned long cpu) ++{ ++} ++ ++static inline void clear_cpuidle_map(unsigned long cpu) ++{ ++} ++ ++static inline int suitable_idle_cpus(struct task_struct *p) ++{ ++ return uprq->curr == uprq->idle; ++} ++ ++static inline void resched_suitable_idle(struct task_struct *p) ++{ ++} ++ ++static inline int ++cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p) ++{ ++ return 0; ++} ++#endif /* CONFIG_SMP */ ++ ++/* ++ * activate_idle_task - move idle task to the _front_ of runqueue. ++ */ ++static inline void activate_idle_task(struct task_struct *p) ++{ ++ enqueue_task_head(p); ++ grq.nr_running++; ++ inc_qnr(); ++} ++ ++static inline int normal_prio(struct task_struct *p) ++{ ++ if (has_rt_policy(p)) ++ return MAX_RT_PRIO - 1 - p->rt_priority; ++ if (idleprio_task(p)) ++ return IDLE_PRIO; ++ if (iso_task(p)) ++ return ISO_PRIO; ++ return NORMAL_PRIO; ++} ++ ++/* ++ * Calculate the current priority, i.e. the priority ++ * taken into account by the scheduler. This value might ++ * be boosted by RT tasks as it will be RT if the task got ++ * RT-boosted. If not then it returns p->normal_prio. ++ */ ++static int effective_prio(struct task_struct *p) ++{ ++ p->normal_prio = normal_prio(p); ++ /* ++ * If we are RT tasks or we were boosted to RT priority, ++ * keep the priority unchanged. Otherwise, update priority ++ * to the normal priority: ++ */ ++ if (!rt_prio(p->prio)) ++ return p->normal_prio; ++ return p->prio; ++} ++ ++/* ++ * activate_task - move a task to the runqueue. Enter with grq locked. ++ */ ++static void activate_task(struct task_struct *p, struct rq *rq) ++{ ++ update_clocks(rq); ++ ++ /* ++ * Sleep time is in units of nanosecs, so shift by 20 to get a ++ * milliseconds-range estimation of the amount of time that the task ++ * spent sleeping: ++ */ ++ if (unlikely(prof_on == SLEEP_PROFILING)) { ++ if (p->state == TASK_UNINTERRUPTIBLE) ++ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p), ++ (rq->clock - p->last_ran) >> 20); ++ } ++ ++ p->prio = effective_prio(p); ++ if (task_contributes_to_load(p)) ++ grq.nr_uninterruptible--; ++ enqueue_task(p); ++ grq.nr_running++; ++ inc_qnr(); ++} ++ ++/* ++ * deactivate_task - If it's running, it's not on the grq and we can just ++ * decrement the nr_running. Enter with grq locked. ++ */ ++static inline void deactivate_task(struct task_struct *p) ++{ ++ if (task_contributes_to_load(p)) ++ grq.nr_uninterruptible++; ++ grq.nr_running--; ++} ++ ++#ifdef CONFIG_SMP ++void set_task_cpu(struct task_struct *p, unsigned int cpu) ++{ ++ trace_sched_migrate_task(p, cpu); ++ if (task_cpu(p) != cpu) ++ perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); ++ ++ /* ++ * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be ++ * successfuly executed on another CPU. We must ensure that updates of ++ * per-task data have been completed by this moment. ++ */ ++ smp_wmb(); ++ task_thread_info(p)->cpu = cpu; ++} ++#endif ++ ++/* ++ * Move a task off the global queue and take it to a cpu for it will ++ * become the running task. ++ */ ++static inline void take_task(struct rq *rq, struct task_struct *p) ++{ ++ set_task_cpu(p, cpu_of(rq)); ++ dequeue_task(p); ++ dec_qnr(); ++} ++ ++/* ++ * Returns a descheduling task to the grq runqueue unless it is being ++ * deactivated. ++ */ ++static inline void return_task(struct task_struct *p, int deactivate) ++{ ++ if (deactivate) ++ deactivate_task(p); ++ else { ++ inc_qnr(); ++ enqueue_task(p); ++ } ++} ++ ++/* ++ * resched_task - mark a task 'to be rescheduled now'. ++ * ++ * On UP this means the setting of the need_resched flag, on SMP it ++ * might also involve a cross-CPU call to trigger the scheduler on ++ * the target CPU. ++ */ ++#ifdef CONFIG_SMP ++ ++#ifndef tsk_is_polling ++#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) ++#endif ++ ++static void resched_task(struct task_struct *p) ++{ ++ int cpu; ++ ++ assert_raw_spin_locked(&grq.lock); ++ ++ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) ++ return; ++ ++ set_tsk_thread_flag(p, TIF_NEED_RESCHED); ++ ++ cpu = task_cpu(p); ++ if (cpu == smp_processor_id()) ++ return; ++ ++ /* NEED_RESCHED must be visible before we test polling */ ++ smp_mb(); ++ if (!tsk_is_polling(p)) ++ smp_send_reschedule(cpu); ++} ++ ++#else ++static inline void resched_task(struct task_struct *p) ++{ ++ assert_raw_spin_locked(&grq.lock); ++ set_tsk_need_resched(p); ++} ++#endif ++ ++/** ++ * task_curr - is this task currently executing on a CPU? ++ * @p: the task in question. ++ */ ++inline int task_curr(const struct task_struct *p) ++{ ++ return cpu_curr(task_cpu(p)) == p; ++} ++ ++#ifdef CONFIG_SMP ++struct migration_req { ++ struct task_struct *task; ++ int dest_cpu; ++}; ++ ++/* ++ * wait_task_inactive - wait for a thread to unschedule. ++ * ++ * If @match_state is nonzero, it's the @p->state value just checked and ++ * not expected to change. If it changes, i.e. @p might have woken up, ++ * then return zero. When we succeed in waiting for @p to be off its CPU, ++ * we return a positive number (its total switch count). If a second call ++ * a short while later returns the same number, the caller can be sure that ++ * @p has remained unscheduled the whole time. ++ * ++ * The caller must ensure that the task *will* unschedule sometime soon, ++ * else this function might spin for a *long* time. This function can't ++ * be called with interrupts off, or it may introduce deadlock with ++ * smp_call_function() if an IPI is sent by the same process we are ++ * waiting to become inactive. ++ */ ++unsigned long wait_task_inactive(struct task_struct *p, long match_state) ++{ ++ unsigned long flags; ++ int running, on_rq; ++ unsigned long ncsw; ++ struct rq *rq; ++ ++ for (;;) { ++ /* ++ * We do the initial early heuristics without holding ++ * any task-queue locks at all. We'll only try to get ++ * the runqueue lock when things look like they will ++ * work out! In the unlikely event rq is dereferenced ++ * since we're lockless, grab it again. ++ */ ++#ifdef CONFIG_SMP ++retry_rq: ++ rq = task_rq(p); ++ if (unlikely(!rq)) ++ goto retry_rq; ++#else /* CONFIG_SMP */ ++ rq = task_rq(p); ++#endif ++ /* ++ * If the task is actively running on another CPU ++ * still, just relax and busy-wait without holding ++ * any locks. ++ * ++ * NOTE! Since we don't hold any locks, it's not ++ * even sure that "rq" stays as the right runqueue! ++ * But we don't care, since this will return false ++ * if the runqueue has changed and p is actually now ++ * running somewhere else! ++ */ ++ while (task_running(p) && p == rq->curr) { ++ if (match_state && unlikely(p->state != match_state)) ++ return 0; ++ cpu_relax(); ++ } ++ ++ /* ++ * Ok, time to look more closely! We need the grq ++ * lock now, to be *sure*. If we're wrong, we'll ++ * just go back and repeat. ++ */ ++ rq = task_grq_lock(p, &flags); ++ trace_sched_wait_task(p); ++ running = task_running(p); ++ on_rq = task_queued(p); ++ ncsw = 0; ++ if (!match_state || p->state == match_state) ++ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ ++ task_grq_unlock(&flags); ++ ++ /* ++ * If it changed from the expected state, bail out now. ++ */ ++ if (unlikely(!ncsw)) ++ break; ++ ++ /* ++ * Was it really running after all now that we ++ * checked with the proper locks actually held? ++ * ++ * Oops. Go back and try again.. ++ */ ++ if (unlikely(running)) { ++ cpu_relax(); ++ continue; ++ } ++ ++ /* ++ * It's not enough that it's not actively running, ++ * it must be off the runqueue _entirely_, and not ++ * preempted! ++ * ++ * So if it was still runnable (but just not actively ++ * running right now), it's preempted, and we should ++ * yield - it could be a while. ++ */ ++ if (unlikely(on_rq)) { ++ schedule_timeout_uninterruptible(1); ++ continue; ++ } ++ ++ /* ++ * Ahh, all good. It wasn't running, and it wasn't ++ * runnable, which means that it will never become ++ * running in the future either. We're all done! ++ */ ++ break; ++ } ++ ++ return ncsw; ++} ++ ++/*** ++ * kick_process - kick a running thread to enter/exit the kernel ++ * @p: the to-be-kicked thread ++ * ++ * Cause a process which is running on another CPU to enter ++ * kernel-mode, without any delay. (to get signals handled.) ++ * ++ * NOTE: this function doesnt have to take the runqueue lock, ++ * because all it wants to ensure is that the remote task enters ++ * the kernel. If the IPI races and the task has been migrated ++ * to another CPU then no harm is done and the purpose has been ++ * achieved as well. ++ */ ++void kick_process(struct task_struct *p) ++{ ++ int cpu; ++ ++ preempt_disable(); ++ cpu = task_cpu(p); ++ if ((cpu != smp_processor_id()) && task_curr(p)) ++ smp_send_reschedule(cpu); ++ preempt_enable(); ++} ++EXPORT_SYMBOL_GPL(kick_process); ++#endif ++ ++#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT) ++ ++/* ++ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the ++ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or ++ * between themselves, they cooperatively multitask. An idle rq scores as ++ * prio PRIO_LIMIT so it is always preempted. ++ */ ++static inline int ++can_preempt(struct task_struct *p, int prio, u64 deadline, ++ unsigned int policy) ++{ ++ /* Better static priority RT task or better policy preemption */ ++ if (p->prio < prio) ++ return 1; ++ if (p->prio > prio) ++ return 0; ++ /* SCHED_NORMAL, BATCH and ISO will preempt based on deadline */ ++ if (!deadline_before(p->deadline, deadline)) ++ return 0; ++ return 1; ++} ++#ifdef CONFIG_SMP ++#ifdef CONFIG_HOTPLUG_CPU ++/* ++ * Check to see if there is a task that is affined only to offline CPUs but ++ * still wants runtime. This happens to kernel threads during suspend/halt and ++ * disabling of CPUs. ++ */ ++static inline int online_cpus(struct task_struct *p) ++{ ++ return (likely(cpus_intersects(cpu_online_map, p->cpus_allowed))); ++} ++#else /* CONFIG_HOTPLUG_CPU */ ++/* All available CPUs are always online without hotplug. */ ++static inline int online_cpus(struct task_struct *p) ++{ ++ return 1; ++} ++#endif ++ ++/* ++ * Check to see if p can run on cpu, and if not, whether there are any online ++ * CPUs it can run on instead. ++ */ ++static inline int needs_other_cpu(struct task_struct *p, int cpu) ++{ ++ if (unlikely(!cpu_isset(cpu, p->cpus_allowed))) ++ return 1; ++ return 0; ++} ++ ++/* ++ * latest_deadline and highest_prio_rq are initialised only to silence the ++ * compiler. When all else is equal, still prefer this_rq. ++ */ ++static void try_preempt(struct task_struct *p, struct rq *this_rq) ++{ ++ struct rq *highest_prio_rq = this_rq; ++ u64 latest_deadline; ++ unsigned long cpu; ++ int highest_prio; ++ cpumask_t tmp; ++ ++ if (suitable_idle_cpus(p)) { ++ resched_best_idle(p); ++ return; ++ } ++ ++ /* IDLEPRIO tasks never preempt anything */ ++ if (p->policy == SCHED_IDLEPRIO) ++ return; ++ ++ if (likely(online_cpus(p))) ++ cpus_and(tmp, cpu_online_map, p->cpus_allowed); ++ else ++ return; ++ ++ latest_deadline = 0; ++ highest_prio = -1; ++ ++ for_each_cpu_mask(cpu, tmp) { ++ u64 offset_deadline; ++ struct rq *rq; ++ int rq_prio; ++ ++ rq = cpu_rq(cpu); ++ rq_prio = rq->rq_prio; ++ if (rq_prio < highest_prio) ++ continue; ++ ++ offset_deadline = rq->rq_deadline - ++ cache_distance(this_rq, rq, p); ++ ++ if (rq_prio > highest_prio || (rq_prio == highest_prio && ++ deadline_after(offset_deadline, latest_deadline))) { ++ latest_deadline = offset_deadline; ++ highest_prio = rq_prio; ++ highest_prio_rq = rq; ++ } ++ } ++ ++ if (!can_preempt(p, highest_prio, highest_prio_rq->rq_deadline, ++ highest_prio_rq->rq_policy)) ++ return; ++ ++ resched_task(highest_prio_rq->curr); ++} ++#else /* CONFIG_SMP */ ++static inline int needs_other_cpu(struct task_struct *p, int cpu) ++{ ++ return 0; ++} ++ ++static void try_preempt(struct task_struct *p, struct rq *this_rq) ++{ ++ if (p->policy == SCHED_IDLEPRIO) ++ return; ++ if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline, ++ uprq->rq_policy)) ++ resched_task(uprq->curr); ++} ++#endif /* CONFIG_SMP */ ++ ++/** ++ * task_oncpu_function_call - call a function on the cpu on which a task runs ++ * @p: the task to evaluate ++ * @func: the function to be called ++ * @info: the function call argument ++ * ++ * Calls the function @func when the task is currently running. This might ++ * be on the current CPU, which just calls the function directly ++ */ ++void task_oncpu_function_call(struct task_struct *p, ++ void (*func) (void *info), void *info) ++{ ++ int cpu; ++ ++ preempt_disable(); ++ cpu = task_cpu(p); ++ if (task_curr(p)) ++ smp_call_function_single(cpu, func, info, 1); ++ preempt_enable(); ++} ++ ++static inline void ttwu_activate(struct task_struct *p, struct rq *rq, ++ bool is_sync) ++{ ++ activate_task(p, rq); ++ ++ /* ++ * Sync wakeups (i.e. those types of wakeups where the waker ++ * has indicated that it will leave the CPU in short order) ++ * don't trigger a preemption if there are no idle cpus, ++ * instead waiting for current to deschedule. ++ */ ++ if (!is_sync || suitable_idle_cpus(p)) ++ try_preempt(p, rq); ++} ++ ++static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, ++ bool success) ++{ ++ trace_sched_wakeup(p, success); ++ p->state = TASK_RUNNING; ++ ++ /* ++ * if a worker is waking up, notify workqueue. Note that on BFS, we ++ * don't really know what cpu it will be, so we fake it for ++ * wq_worker_waking_up :/ ++ */ ++ if ((p->flags & PF_WQ_WORKER) && success) ++ wq_worker_waking_up(p, cpu_of(rq)); ++} ++ ++/*** ++ * try_to_wake_up - wake up a thread ++ * @p: the thread to be awakened ++ * @state: the mask of task states that can be woken ++ * @wake_flags: wake modifier flags (WF_*) ++ * ++ * Put it on the run-queue if it's not already there. The "current" ++ * thread is always on the run-queue (except when the actual ++ * re-schedule is in progress), and as such you're allowed to do ++ * the simpler "current->state = TASK_RUNNING" to mark yourself ++ * runnable without the overhead of this. ++ * ++ * Returns %true if @p was woken up, %false if it was already running ++ * or @state didn't match @p's state. ++ */ ++static int try_to_wake_up(struct task_struct *p, unsigned int state, ++ int wake_flags) ++{ ++ unsigned long flags; ++ int success = 0; ++ struct rq *rq; ++ ++ get_cpu(); ++ ++ /* This barrier is undocumented, probably for p->state? くそ */ ++ smp_wmb(); ++ ++ /* ++ * No need to do time_lock_grq as we only need to update the rq clock ++ * if we activate the task ++ */ ++ rq = task_grq_lock(p, &flags); ++ ++ /* state is a volatile long, どうして、分からない */ ++ if (!((unsigned int)p->state & state)) ++ goto out_unlock; ++ ++ if (task_queued(p) || task_running(p)) ++ goto out_running; ++ ++ ttwu_activate(p, rq, wake_flags & WF_SYNC); ++ success = true; ++ ++out_running: ++ ttwu_post_activation(p, rq, success); ++out_unlock: ++ task_grq_unlock(&flags); ++ put_cpu(); ++ ++ return success; ++} ++ ++/** ++ * try_to_wake_up_local - try to wake up a local task with grq lock held ++ * @p: the thread to be awakened ++ * ++ * Put @p on the run-queue if it's not already there. The caller must ++ * ensure that grq is locked and, @p is not the current task. ++ * grq stays locked over invocation. ++ */ ++static void try_to_wake_up_local(struct task_struct *p) ++{ ++ struct rq *rq = task_rq(p); ++ bool success = false; ++ ++ WARN_ON(rq != this_rq()); ++ BUG_ON(p == current); ++ lockdep_assert_held(&grq.lock); ++ ++ if (!(p->state & TASK_NORMAL)) ++ return; ++ ++ if (!task_queued(p)) { ++ if (likely(!task_running(p))) { ++ schedstat_inc(rq, ttwu_count); ++ schedstat_inc(rq, ttwu_local); ++ } ++ ttwu_activate(p, rq, false); ++ success = true; ++ } ++ ttwu_post_activation(p, rq, success); ++} ++ ++/** ++ * wake_up_process - Wake up a specific process ++ * @p: The process to be woken up. ++ * ++ * Attempt to wake up the nominated process and move it to the set of runnable ++ * processes. Returns 1 if the process was woken up, 0 if it was already ++ * running. ++ * ++ * It may be assumed that this function implies a write memory barrier before ++ * changing the task state if and only if any tasks are woken up. ++ */ ++int wake_up_process(struct task_struct *p) ++{ ++ return try_to_wake_up(p, TASK_ALL, 0); ++} ++EXPORT_SYMBOL(wake_up_process); ++ ++int wake_up_state(struct task_struct *p, unsigned int state) ++{ ++ return try_to_wake_up(p, state, 0); ++} ++ ++static void time_slice_expired(struct task_struct *p); ++ ++/* ++ * Perform scheduler related setup for a newly forked process p. ++ * p is forked by current. ++ */ ++void sched_fork(struct task_struct *p, int clone_flags) ++{ ++ struct task_struct *curr; ++ int cpu = get_cpu(); ++ struct rq *rq; ++ ++#ifdef CONFIG_PREEMPT_NOTIFIERS ++ INIT_HLIST_HEAD(&p->preempt_notifiers); ++#endif ++ /* ++ * We mark the process as running here. This guarantees that ++ * nobody will actually run it, and a signal or other external ++ * event cannot wake it up and insert it on the runqueue either. ++ */ ++ p->state = TASK_RUNNING; ++ set_task_cpu(p, cpu); ++ ++ /* Should be reset in fork.c but done here for ease of bfs patching */ ++ p->sched_time = p->stime_pc = p->utime_pc = 0; ++ ++ /* ++ * Revert to default priority/policy on fork if requested. ++ */ ++ if (unlikely(p->sched_reset_on_fork)) { ++ if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { ++ p->policy = SCHED_NORMAL; ++ p->normal_prio = normal_prio(p); ++ } ++ ++ if (PRIO_TO_NICE(p->static_prio) < 0) { ++ p->static_prio = NICE_TO_PRIO(0); ++ p->normal_prio = p->static_prio; ++ } ++ ++ /* ++ * We don't need the reset flag anymore after the fork. It has ++ * fulfilled its duty: ++ */ ++ p->sched_reset_on_fork = 0; ++ } ++ ++ curr = current; ++ /* ++ * Make sure we do not leak PI boosting priority to the child. ++ */ ++ p->prio = curr->normal_prio; ++ ++ INIT_LIST_HEAD(&p->run_list); ++#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) ++ if (unlikely(sched_info_on())) ++ memset(&p->sched_info, 0, sizeof(p->sched_info)); ++#endif ++ ++ p->oncpu = 0; ++ ++#ifdef CONFIG_PREEMPT ++ /* Want to start with kernel preemption disabled. */ ++ task_thread_info(p)->preempt_count = 1; ++#endif ++ if (unlikely(p->policy == SCHED_FIFO)) ++ goto out; ++ /* ++ * Share the timeslice between parent and child, thus the ++ * total amount of pending timeslices in the system doesn't change, ++ * resulting in more scheduling fairness. If it's negative, it won't ++ * matter since that's the same as being 0. current's time_slice is ++ * actually in rq_time_slice when it's running, as is its last_ran ++ * value. rq->rq_deadline is only modified within schedule() so it ++ * is always equal to current->deadline. ++ */ ++ rq = task_grq_lock_irq(curr); ++ if (likely(rq->rq_time_slice >= RESCHED_US * 2)) { ++ rq->rq_time_slice /= 2; ++ p->time_slice = rq->rq_time_slice; ++ } else { ++ /* ++ * Forking task has run out of timeslice. Reschedule it and ++ * start its child with a new time slice and deadline. The ++ * child will end up running first because its deadline will ++ * be slightly earlier. ++ */ ++ rq->rq_time_slice = 0; ++ set_tsk_need_resched(curr); ++ time_slice_expired(p); ++ } ++ p->last_ran = rq->rq_last_ran; ++ task_grq_unlock_irq(); ++out: ++ put_cpu(); ++} ++ ++/* ++ * wake_up_new_task - wake up a newly created task for the first time. ++ * ++ * This function will do some initial scheduler statistics housekeeping ++ * that must be done for every newly created context, then puts the task ++ * on the runqueue and wakes it. ++ */ ++void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) ++{ ++ struct task_struct *parent; ++ unsigned long flags; ++ struct rq *rq; ++ ++ rq = task_grq_lock(p, &flags); ++ p->state = TASK_RUNNING; ++ parent = p->parent; ++ /* Unnecessary but small chance that the parent changed CPU */ ++ set_task_cpu(p, task_cpu(parent)); ++ activate_task(p, rq); ++ trace_sched_wakeup_new(p, 1); ++ if (!(clone_flags & CLONE_VM) && rq->curr == parent && ++ !suitable_idle_cpus(p)) { ++ /* ++ * The VM isn't cloned, so we're in a good position to ++ * do child-runs-first in anticipation of an exec. This ++ * usually avoids a lot of COW overhead. ++ */ ++ resched_task(parent); ++ } else ++ try_preempt(p, rq); ++ task_grq_unlock(&flags); ++} ++ ++#ifdef CONFIG_PREEMPT_NOTIFIERS ++ ++/** ++ * preempt_notifier_register - tell me when current is being preempted & rescheduled ++ * @notifier: notifier struct to register ++ */ ++void preempt_notifier_register(struct preempt_notifier *notifier) ++{ ++ hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); ++} ++EXPORT_SYMBOL_GPL(preempt_notifier_register); ++ ++/** ++ * preempt_notifier_unregister - no longer interested in preemption notifications ++ * @notifier: notifier struct to unregister ++ * ++ * This is safe to call from within a preemption notifier. ++ */ ++void preempt_notifier_unregister(struct preempt_notifier *notifier) ++{ ++ hlist_del(¬ifier->link); ++} ++EXPORT_SYMBOL_GPL(preempt_notifier_unregister); ++ ++static void fire_sched_in_preempt_notifiers(struct task_struct *curr) ++{ ++ struct preempt_notifier *notifier; ++ struct hlist_node *node; ++ ++ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) ++ notifier->ops->sched_in(notifier, raw_smp_processor_id()); ++} ++ ++static void ++fire_sched_out_preempt_notifiers(struct task_struct *curr, ++ struct task_struct *next) ++{ ++ struct preempt_notifier *notifier; ++ struct hlist_node *node; ++ ++ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) ++ notifier->ops->sched_out(notifier, next); ++} ++ ++#else /* !CONFIG_PREEMPT_NOTIFIERS */ ++ ++static void fire_sched_in_preempt_notifiers(struct task_struct *curr) ++{ ++} ++ ++static void ++fire_sched_out_preempt_notifiers(struct task_struct *curr, ++ struct task_struct *next) ++{ ++} ++ ++#endif /* CONFIG_PREEMPT_NOTIFIERS */ ++ ++/** ++ * prepare_task_switch - prepare to switch tasks ++ * @rq: the runqueue preparing to switch ++ * @next: the task we are going to switch to. ++ * ++ * This is called with the rq lock held and interrupts off. It must ++ * be paired with a subsequent finish_task_switch after the context ++ * switch. ++ * ++ * prepare_task_switch sets up locking and calls architecture specific ++ * hooks. ++ */ ++static inline void ++prepare_task_switch(struct rq *rq, struct task_struct *prev, ++ struct task_struct *next) ++{ ++ fire_sched_out_preempt_notifiers(prev, next); ++ prepare_lock_switch(rq, next); ++ prepare_arch_switch(next); ++} ++ ++/** ++ * finish_task_switch - clean up after a task-switch ++ * @rq: runqueue associated with task-switch ++ * @prev: the thread we just switched away from. ++ * ++ * finish_task_switch must be called after the context switch, paired ++ * with a prepare_task_switch call before the context switch. ++ * finish_task_switch will reconcile locking set up by prepare_task_switch, ++ * and do any other architecture-specific cleanup actions. ++ * ++ * Note that we may have delayed dropping an mm in context_switch(). If ++ * so, we finish that here outside of the runqueue lock. (Doing it ++ * with the lock held can cause deadlocks; see schedule() for ++ * details.) ++ */ ++static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) ++ __releases(grq.lock) ++{ ++ struct mm_struct *mm = rq->prev_mm; ++ long prev_state; ++ ++ rq->prev_mm = NULL; ++ ++ /* ++ * A task struct has one reference for the use as "current". ++ * If a task dies, then it sets TASK_DEAD in tsk->state and calls ++ * schedule one last time. The schedule call will never return, and ++ * the scheduled task must drop that reference. ++ * The test for TASK_DEAD must occur while the runqueue locks are ++ * still held, otherwise prev could be scheduled on another cpu, die ++ * there before we look at prev->state, and then the reference would ++ * be dropped twice. ++ * Manfred Spraul <manfred@colorfullife.com> ++ */ ++ prev_state = prev->state; ++ finish_arch_switch(prev); ++#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW ++ local_irq_disable(); ++#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ ++ perf_event_task_sched_in(current); ++#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW ++ local_irq_enable(); ++#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ ++ finish_lock_switch(rq, prev); ++ ++ fire_sched_in_preempt_notifiers(current); ++ if (mm) ++ mmdrop(mm); ++ if (unlikely(prev_state == TASK_DEAD)) { ++ /* ++ * Remove function-return probe instances associated with this ++ * task and put them back on the free list. ++ */ ++ kprobe_flush_task(prev); ++ put_task_struct(prev); ++ } ++} ++ ++/** ++ * schedule_tail - first thing a freshly forked thread must call. ++ * @prev: the thread we just switched away from. ++ */ ++asmlinkage void schedule_tail(struct task_struct *prev) ++ __releases(grq.lock) ++{ ++ struct rq *rq = this_rq(); ++ ++ finish_task_switch(rq, prev); ++#ifdef __ARCH_WANT_UNLOCKED_CTXSW ++ /* In this case, finish_task_switch does not reenable preemption */ ++ preempt_enable(); ++#endif ++ if (current->set_child_tid) ++ put_user(current->pid, current->set_child_tid); ++} ++ ++/* ++ * context_switch - switch to the new MM and the new ++ * thread's register state. ++ */ ++static inline void ++context_switch(struct rq *rq, struct task_struct *prev, ++ struct task_struct *next) ++{ ++ struct mm_struct *mm, *oldmm; ++ ++ prepare_task_switch(rq, prev, next); ++ trace_sched_switch(prev, next); ++ mm = next->mm; ++ oldmm = prev->active_mm; ++ /* ++ * For paravirt, this is coupled with an exit in switch_to to ++ * combine the page table reload and the switch backend into ++ * one hypercall. ++ */ ++ arch_start_context_switch(prev); ++ ++ if (!mm) { ++ next->active_mm = oldmm; ++ atomic_inc(&oldmm->mm_count); ++ enter_lazy_tlb(oldmm, next); ++ } else ++ switch_mm(oldmm, mm, next); ++ ++ if (!prev->mm) { ++ prev->active_mm = NULL; ++ rq->prev_mm = oldmm; ++ } ++ /* ++ * Since the runqueue lock will be released by the next ++ * task (which is an invalid locking op but in the case ++ * of the scheduler it's an obvious special-case), so we ++ * do an early lockdep release here: ++ */ ++#ifndef __ARCH_WANT_UNLOCKED_CTXSW ++ spin_release(&grq.lock.dep_map, 1, _THIS_IP_); ++#endif ++ ++ /* Here we just switch the register state and the stack. */ ++ switch_to(prev, next, prev); ++ ++ barrier(); ++ /* ++ * this_rq must be evaluated again because prev may have moved ++ * CPUs since it called schedule(), thus the 'rq' on its stack ++ * frame will be invalid. ++ */ ++ finish_task_switch(this_rq(), prev); ++} ++ ++/* ++ * nr_running, nr_uninterruptible and nr_context_switches: ++ * ++ * externally visible scheduler statistics: current number of runnable ++ * threads, current number of uninterruptible-sleeping threads, total ++ * number of context switches performed since bootup. All are measured ++ * without grabbing the grq lock but the occasional inaccurate result ++ * doesn't matter so long as it's positive. ++ */ ++unsigned long nr_running(void) ++{ ++ long nr = grq.nr_running; ++ ++ if (unlikely(nr < 0)) ++ nr = 0; ++ return (unsigned long)nr; ++} ++ ++unsigned long nr_uninterruptible(void) ++{ ++ long nu = grq.nr_uninterruptible; ++ ++ if (unlikely(nu < 0)) ++ nu = 0; ++ return nu; ++} ++ ++unsigned long long nr_context_switches(void) ++{ ++ long long ns = grq.nr_switches; ++ ++ /* This is of course impossible */ ++ if (unlikely(ns < 0)) ++ ns = 1; ++ return (long long)ns; ++} ++ ++unsigned long nr_iowait(void) ++{ ++ unsigned long i, sum = 0; ++ ++ for_each_possible_cpu(i) ++ sum += atomic_read(&cpu_rq(i)->nr_iowait); ++ ++ return sum; ++} ++ ++unsigned long nr_iowait_cpu(int cpu) ++{ ++ struct rq *this = cpu_rq(cpu); ++ return atomic_read(&this->nr_iowait); ++} ++ ++unsigned long nr_active(void) ++{ ++ return nr_running() + nr_uninterruptible(); ++} ++ ++/* Beyond a task running on this CPU, load is equal everywhere on BFS */ ++unsigned long this_cpu_load(void) ++{ ++ return this_rq()->rq_running + ++ (queued_notrunning() + nr_uninterruptible()) / ++ (1 + num_online_cpus()); ++} ++ ++/* Variables and functions for calc_load */ ++static unsigned long calc_load_update; ++unsigned long avenrun[3]; ++EXPORT_SYMBOL(avenrun); ++ ++/** ++ * get_avenrun - get the load average array ++ * @loads: pointer to dest load array ++ * @offset: offset to add ++ * @shift: shift count to shift the result left ++ * ++ * These values are estimates at best, so no need for locking. ++ */ ++void get_avenrun(unsigned long *loads, unsigned long offset, int shift) ++{ ++ loads[0] = (avenrun[0] + offset) << shift; ++ loads[1] = (avenrun[1] + offset) << shift; ++ loads[2] = (avenrun[2] + offset) << shift; ++} ++ ++static unsigned long ++calc_load(unsigned long load, unsigned long exp, unsigned long active) ++{ ++ load *= exp; ++ load += active * (FIXED_1 - exp); ++ return load >> FSHIFT; ++} ++ ++/* ++ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds. ++ */ ++void calc_global_load(unsigned long ticks) ++{ ++ long active; ++ ++ if (time_before(jiffies, calc_load_update)) ++ return; ++ active = nr_active() * FIXED_1; ++ ++ avenrun[0] = calc_load(avenrun[0], EXP_1, active); ++ avenrun[1] = calc_load(avenrun[1], EXP_5, active); ++ avenrun[2] = calc_load(avenrun[2], EXP_15, active); ++ ++ calc_load_update = jiffies + LOAD_FREQ; ++} ++ ++DEFINE_PER_CPU(struct kernel_stat, kstat); ++ ++EXPORT_PER_CPU_SYMBOL(kstat); ++ ++#ifdef CONFIG_IRQ_TIME_ACCOUNTING ++ ++/* ++ * There are no locks covering percpu hardirq/softirq time. ++ * They are only modified in account_system_vtime, on corresponding CPU ++ * with interrupts disabled. So, writes are safe. ++ * They are read and saved off onto struct rq in update_rq_clock(). ++ * This may result in other CPU reading this CPU's irq time and can ++ * race with irq/account_system_vtime on this CPU. We would either get old ++ * or new value with a side effect of accounting a slice of irq time to wrong ++ * task when irq is in progress while we read rq->clock. That is a worthy ++ * compromise in place of having locks on each irq in account_system_time. ++ */ ++static DEFINE_PER_CPU(u64, cpu_hardirq_time); ++static DEFINE_PER_CPU(u64, cpu_softirq_time); ++ ++static DEFINE_PER_CPU(u64, irq_start_time); ++static int sched_clock_irqtime; ++ ++void enable_sched_clock_irqtime(void) ++{ ++ sched_clock_irqtime = 1; ++} ++ ++void disable_sched_clock_irqtime(void) ++{ ++ sched_clock_irqtime = 0; ++} ++ ++#ifndef CONFIG_64BIT ++static DEFINE_PER_CPU(seqcount_t, irq_time_seq); ++ ++static inline void irq_time_write_begin(void) ++{ ++ __this_cpu_inc(irq_time_seq.sequence); ++ smp_wmb(); ++} ++ ++static inline void irq_time_write_end(void) ++{ ++ smp_wmb(); ++ __this_cpu_inc(irq_time_seq.sequence); ++} ++ ++static inline u64 irq_time_read(int cpu) ++{ ++ u64 irq_time; ++ unsigned seq; ++ ++ do { ++ seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); ++ irq_time = per_cpu(cpu_softirq_time, cpu) + ++ per_cpu(cpu_hardirq_time, cpu); ++ } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); ++ ++ return irq_time; ++} ++#else /* CONFIG_64BIT */ ++static inline void irq_time_write_begin(void) ++{ ++} ++ ++static inline void irq_time_write_end(void) ++{ ++} ++ ++static inline u64 irq_time_read(int cpu) ++{ ++ return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); ++} ++#endif /* CONFIG_64BIT */ ++ ++/* ++ * Called before incrementing preempt_count on {soft,}irq_enter ++ * and before decrementing preempt_count on {soft,}irq_exit. ++ */ ++void account_system_vtime(struct task_struct *curr) ++{ ++ unsigned long flags; ++ s64 delta; ++ int cpu; ++ ++ if (!sched_clock_irqtime) ++ return; ++ ++ local_irq_save(flags); ++ ++ cpu = smp_processor_id(); ++ delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); ++ __this_cpu_add(irq_start_time, delta); ++ ++ irq_time_write_begin(); ++ /* ++ * We do not account for softirq time from ksoftirqd here. ++ * We want to continue accounting softirq time to ksoftirqd thread ++ * in that case, so as not to confuse scheduler with a special task ++ * that do not consume any time, but still wants to run. ++ */ ++ if (hardirq_count()) ++ __this_cpu_add(cpu_hardirq_time, delta); ++ else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) ++ __this_cpu_add(cpu_softirq_time, delta); ++ ++ irq_time_write_end(); ++ local_irq_restore(flags); ++} ++EXPORT_SYMBOL_GPL(account_system_vtime); ++ ++static void update_rq_clock_task(struct rq *rq, s64 delta) ++{ ++ s64 irq_delta; ++ ++ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; ++ ++ /* ++ * Since irq_time is only updated on {soft,}irq_exit, we might run into ++ * this case when a previous update_rq_clock() happened inside a ++ * {soft,}irq region. ++ * ++ * When this happens, we stop ->clock_task and only update the ++ * prev_irq_time stamp to account for the part that fit, so that a next ++ * update will consume the rest. This ensures ->clock_task is ++ * monotonic. ++ * ++ * It does however cause some slight miss-attribution of {soft,}irq ++ * time, a more accurate solution would be to update the irq_time using ++ * the current rq->clock timestamp, except that would require using ++ * atomic ops. ++ */ ++ if (irq_delta > delta) ++ irq_delta = delta; ++ ++ rq->prev_irq_time += irq_delta; ++ delta -= irq_delta; ++ rq->clock_task += delta; ++} ++ ++#else /* CONFIG_IRQ_TIME_ACCOUNTING */ ++ ++static void update_rq_clock_task(struct rq *rq, s64 delta) ++{ ++ rq->clock_task += delta; ++} ++ ++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ ++ ++/* ++ * On each tick, see what percentage of that tick was attributed to each ++ * component and add the percentage to the _pc values. Once a _pc value has ++ * accumulated one tick's worth, account for that. This means the total ++ * percentage of load components will always be 100 per tick. ++ */ ++static void pc_idle_time(struct rq *rq, unsigned long pc) ++{ ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); ++ ++ if (atomic_read(&rq->nr_iowait) > 0) { ++ rq->iowait_pc += pc; ++ if (rq->iowait_pc >= 100) { ++ rq->iowait_pc %= 100; ++ cpustat->iowait = cputime64_add(cpustat->iowait, tmp); ++ } ++ } else { ++ rq->idle_pc += pc; ++ if (rq->idle_pc >= 100) { ++ rq->idle_pc %= 100; ++ cpustat->idle = cputime64_add(cpustat->idle, tmp); ++ } ++ } ++} ++ ++static void ++pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset, ++ unsigned long pc, unsigned long ns) ++{ ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); ++ cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); ++ ++ p->stime_pc += pc; ++ if (p->stime_pc >= 100) { ++ p->stime_pc -= 100; ++ p->stime = cputime_add(p->stime, cputime_one_jiffy); ++ p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled); ++ account_group_system_time(p, cputime_one_jiffy); ++ acct_update_integrals(p); ++ } ++ p->sched_time += ns; ++ ++ if (hardirq_count() - hardirq_offset) { ++ rq->irq_pc += pc; ++ if (rq->irq_pc >= 100) { ++ rq->irq_pc %= 100; ++ cpustat->irq = cputime64_add(cpustat->irq, tmp); ++ } ++ } else if (in_serving_softirq()) { ++ rq->softirq_pc += pc; ++ if (rq->softirq_pc >= 100) { ++ rq->softirq_pc %= 100; ++ cpustat->softirq = cputime64_add(cpustat->softirq, tmp); ++ } ++ } else { ++ rq->system_pc += pc; ++ if (rq->system_pc >= 100) { ++ rq->system_pc %= 100; ++ cpustat->system = cputime64_add(cpustat->system, tmp); ++ } ++ } ++} ++ ++static void pc_user_time(struct rq *rq, struct task_struct *p, ++ unsigned long pc, unsigned long ns) ++{ ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); ++ cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); ++ ++ p->utime_pc += pc; ++ if (p->utime_pc >= 100) { ++ p->utime_pc -= 100; ++ p->utime = cputime_add(p->utime, cputime_one_jiffy); ++ p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled); ++ account_group_user_time(p, cputime_one_jiffy); ++ acct_update_integrals(p); ++ } ++ p->sched_time += ns; ++ ++ if (TASK_NICE(p) > 0 || idleprio_task(p)) { ++ rq->nice_pc += pc; ++ if (rq->nice_pc >= 100) { ++ rq->nice_pc %= 100; ++ cpustat->nice = cputime64_add(cpustat->nice, tmp); ++ } ++ } else { ++ rq->user_pc += pc; ++ if (rq->user_pc >= 100) { ++ rq->user_pc %= 100; ++ cpustat->user = cputime64_add(cpustat->user, tmp); ++ } ++ } ++} ++ ++/* Convert nanoseconds to percentage of one tick. */ ++#define NS_TO_PC(NS) (NS * 100 / JIFFY_NS) ++ ++/* ++ * This is called on clock ticks and on context switches. ++ * Bank in p->sched_time the ns elapsed since the last tick or switch. ++ * CPU scheduler quota accounting is also performed here in microseconds. ++ */ ++static void ++update_cpu_clock(struct rq *rq, struct task_struct *p, int tick) ++{ ++ long account_ns = rq->clock - rq->timekeep_clock; ++ struct task_struct *idle = rq->idle; ++ unsigned long account_pc; ++ ++ if (unlikely(account_ns < 0)) ++ account_ns = 0; ++ ++ account_pc = NS_TO_PC(account_ns); ++ ++ if (tick) { ++ int user_tick = user_mode(get_irq_regs()); ++ ++ /* Accurate tick timekeeping */ ++ if (user_tick) ++ pc_user_time(rq, p, account_pc, account_ns); ++ else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) ++ pc_system_time(rq, p, HARDIRQ_OFFSET, ++ account_pc, account_ns); ++ else ++ pc_idle_time(rq, account_pc); ++ } else { ++ /* Accurate subtick timekeeping */ ++ if (p == idle) ++ pc_idle_time(rq, account_pc); ++ else ++ pc_user_time(rq, p, account_pc, account_ns); ++ } ++ ++ /* time_slice accounting is done in usecs to avoid overflow on 32bit */ ++ if (rq->rq_policy != SCHED_FIFO && p != idle) { ++ s64 time_diff = rq->clock - rq->rq_last_ran; ++ ++ niffy_diff(&time_diff, 1); ++ rq->rq_time_slice -= NS_TO_US(time_diff); ++ } ++ rq->rq_last_ran = rq->timekeep_clock = rq->clock; ++} ++ ++/* ++ * Return any ns on the sched_clock that have not yet been accounted in ++ * @p in case that task is currently running. ++ * ++ * Called with task_grq_lock() held. ++ */ ++static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) ++{ ++ u64 ns = 0; ++ ++ if (p == rq->curr) { ++ update_clocks(rq); ++ ns = rq->clock_task - rq->rq_last_ran; ++ if (unlikely((s64)ns < 0)) ++ ns = 0; ++ } ++ ++ return ns; ++} ++ ++unsigned long long task_delta_exec(struct task_struct *p) ++{ ++ unsigned long flags; ++ struct rq *rq; ++ u64 ns; ++ ++ rq = task_grq_lock(p, &flags); ++ ns = do_task_delta_exec(p, rq); ++ task_grq_unlock(&flags); ++ ++ return ns; ++} ++ ++/* ++ * Return accounted runtime for the task. ++ * In case the task is currently running, return the runtime plus current's ++ * pending runtime that have not been accounted yet. ++ */ ++unsigned long long task_sched_runtime(struct task_struct *p) ++{ ++ unsigned long flags; ++ struct rq *rq; ++ u64 ns; ++ ++ rq = task_grq_lock(p, &flags); ++ ns = p->sched_time + do_task_delta_exec(p, rq); ++ task_grq_unlock(&flags); ++ ++ return ns; ++} ++ ++/* ++ * Return sum_exec_runtime for the thread group. ++ * In case the task is currently running, return the sum plus current's ++ * pending runtime that have not been accounted yet. ++ * ++ * Note that the thread group might have other running tasks as well, ++ * so the return value not includes other pending runtime that other ++ * running tasks might have. ++ */ ++unsigned long long thread_group_sched_runtime(struct task_struct *p) ++{ ++ struct task_cputime totals; ++ unsigned long flags; ++ struct rq *rq; ++ u64 ns; ++ ++ rq = task_grq_lock(p, &flags); ++ thread_group_cputime(p, &totals); ++ ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); ++ task_grq_unlock(&flags); ++ ++ return ns; ++} ++ ++/* Compatibility crap for removal */ ++void account_user_time(struct task_struct *p, cputime_t cputime, ++ cputime_t cputime_scaled) ++{ ++} ++ ++void account_idle_time(cputime_t cputime) ++{ ++} ++ ++/* ++ * Account guest cpu time to a process. ++ * @p: the process that the cpu time gets accounted to ++ * @cputime: the cpu time spent in virtual machine since the last update ++ * @cputime_scaled: cputime scaled by cpu frequency ++ */ ++static void account_guest_time(struct task_struct *p, cputime_t cputime, ++ cputime_t cputime_scaled) ++{ ++ cputime64_t tmp; ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ ++ tmp = cputime_to_cputime64(cputime); ++ ++ /* Add guest time to process. */ ++ p->utime = cputime_add(p->utime, cputime); ++ p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); ++ account_group_user_time(p, cputime); ++ p->gtime = cputime_add(p->gtime, cputime); ++ ++ /* Add guest time to cpustat. */ ++ if (TASK_NICE(p) > 0) { ++ cpustat->nice = cputime64_add(cpustat->nice, tmp); ++ cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); ++ } else { ++ cpustat->user = cputime64_add(cpustat->user, tmp); ++ cpustat->guest = cputime64_add(cpustat->guest, tmp); ++ } ++} ++ ++/* ++ * Account system cpu time to a process. ++ * @p: the process that the cpu time gets accounted to ++ * @hardirq_offset: the offset to subtract from hardirq_count() ++ * @cputime: the cpu time spent in kernel space since the last update ++ * @cputime_scaled: cputime scaled by cpu frequency ++ * This is for guest only now. ++ */ ++void account_system_time(struct task_struct *p, int hardirq_offset, ++ cputime_t cputime, cputime_t cputime_scaled) ++{ ++ ++ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) ++ account_guest_time(p, cputime, cputime_scaled); ++} ++ ++/* ++ * Account for involuntary wait time. ++ * @steal: the cpu time spent in involuntary wait ++ */ ++void account_steal_time(cputime_t cputime) ++{ ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ cputime64_t cputime64 = cputime_to_cputime64(cputime); ++ ++ cpustat->steal = cputime64_add(cpustat->steal, cputime64); ++} ++ ++/* ++ * Account for idle time. ++ * @cputime: the cpu time spent in idle wait ++ */ ++static void account_idle_times(cputime_t cputime) ++{ ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ cputime64_t cputime64 = cputime_to_cputime64(cputime); ++ struct rq *rq = this_rq(); ++ ++ if (atomic_read(&rq->nr_iowait) > 0) ++ cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); ++ else ++ cpustat->idle = cputime64_add(cpustat->idle, cputime64); ++} ++ ++#ifndef CONFIG_VIRT_CPU_ACCOUNTING ++ ++void account_process_tick(struct task_struct *p, int user_tick) ++{ ++} ++ ++/* ++ * Account multiple ticks of steal time. ++ * @p: the process from which the cpu time has been stolen ++ * @ticks: number of stolen ticks ++ */ ++void account_steal_ticks(unsigned long ticks) ++{ ++ account_steal_time(jiffies_to_cputime(ticks)); ++} ++ ++/* ++ * Account multiple ticks of idle time. ++ * @ticks: number of stolen ticks ++ */ ++void account_idle_ticks(unsigned long ticks) ++{ ++ account_idle_times(jiffies_to_cputime(ticks)); ++} ++#endif ++ ++static inline void grq_iso_lock(void) ++ __acquires(grq.iso_lock) ++{ ++ raw_spin_lock(&grq.iso_lock); ++} ++ ++static inline void grq_iso_unlock(void) ++ __releases(grq.iso_lock) ++{ ++ raw_spin_unlock(&grq.iso_lock); ++} ++ ++/* ++ * Functions to test for when SCHED_ISO tasks have used their allocated ++ * quota as real time scheduling and convert them back to SCHED_NORMAL. ++ * Where possible, the data is tested lockless, to avoid grabbing iso_lock ++ * because the occasional inaccurate result won't matter. However the ++ * tick data is only ever modified under lock. iso_refractory is only simply ++ * set to 0 or 1 so it's not worth grabbing the lock yet again for that. ++ */ ++static void set_iso_refractory(void) ++{ ++ grq.iso_refractory = 1; ++} ++ ++static void clear_iso_refractory(void) ++{ ++ grq.iso_refractory = 0; ++} ++ ++/* ++ * Test if SCHED_ISO tasks have run longer than their alloted period as RT ++ * tasks and set the refractory flag if necessary. There is 10% hysteresis ++ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a ++ * slow division. ++ */ ++static unsigned int test_ret_isorefractory(struct rq *rq) ++{ ++ if (likely(!grq.iso_refractory)) { ++ if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu) ++ set_iso_refractory(); ++ } else { ++ if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) ++ clear_iso_refractory(); ++ } ++ return grq.iso_refractory; ++} ++ ++static void iso_tick(void) ++{ ++ grq_iso_lock(); ++ grq.iso_ticks += 100; ++ grq_iso_unlock(); ++} ++ ++/* No SCHED_ISO task was running so decrease rq->iso_ticks */ ++static inline void no_iso_tick(void) ++{ ++ if (grq.iso_ticks) { ++ grq_iso_lock(); ++ grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1; ++ if (unlikely(grq.iso_refractory && grq.iso_ticks < ++ ISO_PERIOD * (sched_iso_cpu * 115 / 128))) ++ clear_iso_refractory(); ++ grq_iso_unlock(); ++ } ++} ++ ++static int rq_running_iso(struct rq *rq) ++{ ++ return rq->rq_prio == ISO_PRIO; ++} ++ ++/* This manages tasks that have run out of timeslice during a scheduler_tick */ ++static void task_running_tick(struct rq *rq) ++{ ++ struct task_struct *p; ++ ++ /* ++ * If a SCHED_ISO task is running we increment the iso_ticks. In ++ * order to prevent SCHED_ISO tasks from causing starvation in the ++ * presence of true RT tasks we account those as iso_ticks as well. ++ */ ++ if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) { ++ if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100) ++ iso_tick(); ++ } else ++ no_iso_tick(); ++ ++ if (iso_queue(rq)) { ++ if (unlikely(test_ret_isorefractory(rq))) { ++ if (rq_running_iso(rq)) { ++ /* ++ * SCHED_ISO task is running as RT and limit ++ * has been hit. Force it to reschedule as ++ * SCHED_NORMAL by zeroing its time_slice ++ */ ++ rq->rq_time_slice = 0; ++ } ++ } ++ } ++ ++ /* SCHED_FIFO tasks never run out of timeslice. */ ++ if (rq->rq_policy == SCHED_FIFO) ++ return; ++ /* ++ * Tasks that were scheduled in the first half of a tick are not ++ * allowed to run into the 2nd half of the next tick if they will ++ * run out of time slice in the interim. Otherwise, if they have ++ * less than RESCHED_US μs of time slice left they will be rescheduled. ++ */ ++ if (rq->dither) { ++ if (rq->rq_time_slice > HALF_JIFFY_US) ++ return; ++ else ++ rq->rq_time_slice = 0; ++ } else if (rq->rq_time_slice >= RESCHED_US) ++ return; ++ ++ /* p->time_slice < RESCHED_US. We only modify task_struct under grq lock */ ++ p = rq->curr; ++ requeue_task(p); ++ grq_lock(); ++ set_tsk_need_resched(p); ++ grq_unlock(); ++} ++ ++void wake_up_idle_cpu(int cpu); ++ ++/* ++ * This function gets called by the timer code, with HZ frequency. ++ * We call it with interrupts disabled. The data modified is all ++ * local to struct rq so we don't need to grab grq lock. ++ */ ++void scheduler_tick(void) ++{ ++ int cpu __maybe_unused = smp_processor_id(); ++ struct rq *rq = cpu_rq(cpu); ++ ++ sched_clock_tick(); ++ /* grq lock not grabbed, so only update rq clock */ ++ update_rq_clock(rq); ++ update_cpu_clock(rq, rq->curr, 1); ++ if (!rq_idle(rq)) ++ task_running_tick(rq); ++ else ++ no_iso_tick(); ++ rq->last_tick = rq->clock; ++ perf_event_task_tick(); ++} ++ ++notrace unsigned long get_parent_ip(unsigned long addr) ++{ ++ if (in_lock_functions(addr)) { ++ addr = CALLER_ADDR2; ++ if (in_lock_functions(addr)) ++ addr = CALLER_ADDR3; ++ } ++ return addr; ++} ++ ++#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ ++ defined(CONFIG_PREEMPT_TRACER)) ++void __kprobes add_preempt_count(int val) ++{ ++#ifdef CONFIG_DEBUG_PREEMPT ++ /* ++ * Underflow? ++ */ ++ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) ++ return; ++#endif ++ preempt_count() += val; ++#ifdef CONFIG_DEBUG_PREEMPT ++ /* ++ * Spinlock count overflowing soon? ++ */ ++ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= ++ PREEMPT_MASK - 10); ++#endif ++ if (preempt_count() == val) ++ trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); ++} ++EXPORT_SYMBOL(add_preempt_count); ++ ++void __kprobes sub_preempt_count(int val) ++{ ++#ifdef CONFIG_DEBUG_PREEMPT ++ /* ++ * Underflow? ++ */ ++ if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) ++ return; ++ /* ++ * Is the spinlock portion underflowing? ++ */ ++ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && ++ !(preempt_count() & PREEMPT_MASK))) ++ return; ++#endif ++ ++ if (preempt_count() == val) ++ trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); ++ preempt_count() -= val; ++} ++EXPORT_SYMBOL(sub_preempt_count); ++#endif ++ ++/* ++ * Deadline is "now" in niffies + (offset by priority). Setting the deadline ++ * is the key to everything. It distributes cpu fairly amongst tasks of the ++ * same nice value, it proportions cpu according to nice level, it means the ++ * task that last woke up the longest ago has the earliest deadline, thus ++ * ensuring that interactive tasks get low latency on wake up. The CPU ++ * proportion works out to the square of the virtual deadline difference, so ++ * this equation will give nice 19 3% CPU compared to nice 0. ++ */ ++static inline u64 prio_deadline_diff(int user_prio) ++{ ++ return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128)); ++} ++ ++static inline u64 task_deadline_diff(struct task_struct *p) ++{ ++ return prio_deadline_diff(TASK_USER_PRIO(p)); ++} ++ ++static inline u64 static_deadline_diff(int static_prio) ++{ ++ return prio_deadline_diff(USER_PRIO(static_prio)); ++} ++ ++static inline int ms_longest_deadline_diff(void) ++{ ++ return NS_TO_MS(prio_deadline_diff(39)); ++} ++ ++/* ++ * The time_slice is only refilled when it is empty and that is when we set a ++ * new deadline. ++ */ ++static void time_slice_expired(struct task_struct *p) ++{ ++ p->time_slice = timeslice(); ++ p->deadline = grq.niffies + task_deadline_diff(p); ++} ++ ++/* ++ * Timeslices below RESCHED_US are considered as good as expired as there's no ++ * point rescheduling when there's so little time left. SCHED_BATCH tasks ++ * have been flagged be not latency sensitive and likely to be fully CPU ++ * bound so every time they're rescheduled they have their time_slice ++ * refilled, but get a new later deadline to have little effect on ++ * SCHED_NORMAL tasks. ++ ++ */ ++static inline void check_deadline(struct task_struct *p) ++{ ++ if (p->time_slice < RESCHED_US || batch_task(p)) ++ time_slice_expired(p); ++} ++ ++/* ++ * O(n) lookup of all tasks in the global runqueue. The real brainfuck ++ * of lock contention and O(n). It's not really O(n) as only the queued, ++ * but not running tasks are scanned, and is O(n) queued in the worst case ++ * scenario only because the right task can be found before scanning all of ++ * them. ++ * Tasks are selected in this order: ++ * Real time tasks are selected purely by their static priority and in the ++ * order they were queued, so the lowest value idx, and the first queued task ++ * of that priority value is chosen. ++ * If no real time tasks are found, the SCHED_ISO priority is checked, and ++ * all SCHED_ISO tasks have the same priority value, so they're selected by ++ * the earliest deadline value. ++ * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the ++ * earliest deadline. ++ * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are ++ * selected by the earliest deadline. ++ */ ++static inline struct ++task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle) ++{ ++ u64 dl, earliest_deadline = 0; /* Initialise to silence compiler */ ++ struct task_struct *p, *edt = idle; ++ unsigned int cpu = cpu_of(rq); ++ struct list_head *queue; ++ int idx = 0; ++ ++retry: ++ idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx); ++ if (idx >= PRIO_LIMIT) ++ goto out; ++ queue = grq.queue + idx; ++ list_for_each_entry(p, queue, run_list) { ++ /* Make sure cpu affinity is ok */ ++ if (needs_other_cpu(p, cpu)) ++ continue; ++ if (idx < MAX_RT_PRIO) { ++ /* We found an rt task */ ++ edt = p; ++ goto out_take; ++ } ++ ++ dl = p->deadline + cache_distance(task_rq(p), rq, p); ++ ++ /* ++ * No rt tasks. Find the earliest deadline task. Now we're in ++ * O(n) territory. This is what we silenced the compiler for: ++ * edt will always start as idle. ++ */ ++ if (edt == idle || ++ deadline_before(dl, earliest_deadline)) { ++ earliest_deadline = dl; ++ edt = p; ++ } ++ } ++ if (edt == idle) { ++ if (++idx < PRIO_LIMIT) ++ goto retry; ++ goto out; ++ } ++out_take: ++ take_task(rq, edt); ++out: ++ return edt; ++} ++ ++/* ++ * Print scheduling while atomic bug: ++ */ ++static noinline void __schedule_bug(struct task_struct *prev) ++{ ++ struct pt_regs *regs = get_irq_regs(); ++ ++ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", ++ prev->comm, prev->pid, preempt_count()); ++ ++ debug_show_held_locks(prev); ++ print_modules(); ++ if (irqs_disabled()) ++ print_irqtrace_events(prev); ++ ++ if (regs) ++ show_regs(regs); ++ else ++ dump_stack(); ++} ++ ++/* ++ * Various schedule()-time debugging checks and statistics: ++ */ ++static inline void schedule_debug(struct task_struct *prev) ++{ ++ /* ++ * Test if we are atomic. Since do_exit() needs to call into ++ * schedule() atomically, we ignore that path for now. ++ * Otherwise, whine if we are scheduling when we should not be. ++ */ ++ if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) ++ __schedule_bug(prev); ++ ++ profile_hit(SCHED_PROFILING, __builtin_return_address(0)); ++ ++ schedstat_inc(this_rq(), sched_count); ++#ifdef CONFIG_SCHEDSTATS ++ if (unlikely(prev->lock_depth >= 0)) { ++ schedstat_inc(this_rq(), bkl_count); ++ schedstat_inc(prev, sched_info.bkl_count); ++ } ++#endif ++} ++ ++/* ++ * The currently running task's information is all stored in rq local data ++ * which is only modified by the local CPU, thereby allowing the data to be ++ * changed without grabbing the grq lock. ++ */ ++static inline void set_rq_task(struct rq *rq, struct task_struct *p) ++{ ++ rq->rq_time_slice = p->time_slice; ++ rq->rq_deadline = p->deadline; ++ rq->rq_last_ran = p->last_ran; ++ rq->rq_policy = p->policy; ++ rq->rq_prio = p->prio; ++ if (p != rq->idle) ++ rq->rq_running = 1; ++ else ++ rq->rq_running = 0; ++} ++ ++static void reset_rq_task(struct rq *rq, struct task_struct *p) ++{ ++ rq->rq_policy = p->policy; ++ rq->rq_prio = p->prio; ++} ++ ++/* ++ * schedule() is the main scheduler function. ++ */ ++asmlinkage void __sched schedule(void) ++{ ++ struct task_struct *prev, *next, *idle; ++ unsigned long *switch_count; ++ int deactivate, cpu; ++ struct rq *rq; ++ ++need_resched: ++ preempt_disable(); ++ ++ cpu = smp_processor_id(); ++ rq = cpu_rq(cpu); ++ idle = rq->idle; ++ rcu_note_context_switch(cpu); ++ prev = rq->curr; ++ ++ release_kernel_lock(prev); ++need_resched_nonpreemptible: ++ ++ deactivate = 0; ++ schedule_debug(prev); ++ ++ grq_lock_irq(); ++ update_clocks(rq); ++ update_cpu_clock(rq, prev, 0); ++ if (rq->clock - rq->last_tick > HALF_JIFFY_NS) ++ rq->dither = 0; ++ else ++ rq->dither = 1; ++ ++ clear_tsk_need_resched(prev); ++ ++ switch_count = &prev->nivcsw; ++ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { ++ if (unlikely(signal_pending_state(prev->state, prev))) { ++ prev->state = TASK_RUNNING; ++ } else { ++ deactivate = 1; ++ /* ++ * If a worker is going to sleep, notify and ++ * ask workqueue whether it wants to wake up a ++ * task to maintain concurrency. If so, wake ++ * up the task. ++ */ ++ if (prev->flags & PF_WQ_WORKER) { ++ struct task_struct *to_wakeup; ++ ++ to_wakeup = wq_worker_sleeping(prev, cpu); ++ if (to_wakeup) { ++ /* This shouldn't happen, but does */ ++ if (unlikely(to_wakeup == prev)) ++ deactivate = 0; ++ else ++ try_to_wake_up_local(to_wakeup); ++ } ++ } ++ } ++ switch_count = &prev->nvcsw; ++ } ++ ++ if (prev != idle) { ++ /* Update all the information stored on struct rq */ ++ prev->time_slice = rq->rq_time_slice; ++ prev->deadline = rq->rq_deadline; ++ check_deadline(prev); ++ prev->last_ran = rq->clock; ++ ++ /* Task changed affinity off this CPU */ ++ if (needs_other_cpu(prev, cpu)) ++ resched_suitable_idle(prev); ++ else if (!deactivate) { ++ if (!queued_notrunning()) { ++ /* ++ * We now know prev is the only thing that is ++ * awaiting CPU so we can bypass rechecking for ++ * the earliest deadline task and just run it ++ * again. ++ */ ++ grq_unlock_irq(); ++ goto rerun_prev_unlocked; ++ } else { ++ /* ++ * If prev got kicked off by a task that has to ++ * run on this CPU for affinity reasons then ++ * there may be an idle CPU it can go to. ++ */ ++ resched_suitable_idle(prev); ++ } ++ } ++ return_task(prev, deactivate); ++ } ++ ++ if (unlikely(!queued_notrunning())) { ++ /* ++ * This CPU is now truly idle as opposed to when idle is ++ * scheduled as a high priority task in its own right. ++ */ ++ next = idle; ++ schedstat_inc(rq, sched_goidle); ++ set_cpuidle_map(cpu); ++ } else { ++ next = earliest_deadline_task(rq, idle); ++ prefetch(next); ++ prefetch_stack(next); ++ clear_cpuidle_map(cpu); ++ } ++ ++ if (likely(prev != next)) { ++ sched_info_switch(prev, next); ++ perf_event_task_sched_out(prev, next); ++ ++ set_rq_task(rq, next); ++ grq.nr_switches++; ++ prev->oncpu = 0; ++ next->oncpu = 1; ++ rq->curr = next; ++ ++*switch_count; ++ ++ context_switch(rq, prev, next); /* unlocks the grq */ ++ /* ++ * The context switch have flipped the stack from under us ++ * and restored the local variables which were saved when ++ * this task called schedule() in the past. prev == current ++ * is still correct, but it can be moved to another cpu/rq. ++ */ ++ cpu = smp_processor_id(); ++ rq = cpu_rq(cpu); ++ idle = rq->idle; ++ } else ++ grq_unlock_irq(); ++ ++rerun_prev_unlocked: ++ if (unlikely(reacquire_kernel_lock(prev))) ++ goto need_resched_nonpreemptible; ++ ++ preempt_enable_no_resched(); ++ if (need_resched()) ++ goto need_resched; ++} ++EXPORT_SYMBOL(schedule); ++ ++#ifdef CONFIG_SMP ++int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) ++{ ++ unsigned int cpu; ++ struct rq *rq; ++ ++#ifdef CONFIG_DEBUG_PAGEALLOC ++ /* ++ * Need to access the cpu field knowing that ++ * DEBUG_PAGEALLOC could have unmapped it if ++ * the mutex owner just released it and exited. ++ */ ++ if (probe_kernel_address(&owner->cpu, cpu)) ++ return 0; ++#else ++ cpu = owner->cpu; ++#endif ++ ++ /* ++ * Even if the access succeeded (likely case), ++ * the cpu field may no longer be valid. ++ */ ++ if (cpu >= nr_cpumask_bits) ++ return 0; ++ ++ /* ++ * We need to validate that we can do a ++ * get_cpu() and that we have the percpu area. ++ */ ++ if (!cpu_online(cpu)) ++ return 0; ++ ++ rq = cpu_rq(cpu); ++ ++ for (;;) { ++ /* ++ * Owner changed, break to re-assess state. ++ */ ++ if (lock->owner != owner) ++ break; ++ ++ /* ++ * Is that owner really running on that cpu? ++ */ ++ if (task_thread_info(rq->curr) != owner || need_resched()) ++ return 0; ++ ++ cpu_relax(); ++ } ++ ++ return 1; ++} ++#endif ++ ++#ifdef CONFIG_PREEMPT ++/* ++ * this is the entry point to schedule() from in-kernel preemption ++ * off of preempt_enable. Kernel preemptions off return from interrupt ++ * occur there and call schedule directly. ++ */ ++asmlinkage void __sched notrace preempt_schedule(void) ++{ ++ struct thread_info *ti = current_thread_info(); ++ ++ /* ++ * If there is a non-zero preempt_count or interrupts are disabled, ++ * we do not want to preempt the current task. Just return.. ++ */ ++ if (likely(ti->preempt_count || irqs_disabled())) ++ return; ++ ++ do { ++ add_preempt_count_notrace(PREEMPT_ACTIVE); ++ schedule(); ++ sub_preempt_count_notrace(PREEMPT_ACTIVE); ++ ++ /* ++ * Check again in case we missed a preemption opportunity ++ * between schedule and now. ++ */ ++ barrier(); ++ } while (need_resched()); ++} ++EXPORT_SYMBOL(preempt_schedule); ++ ++/* ++ * this is the entry point to schedule() from kernel preemption ++ * off of irq context. ++ * Note, that this is called and return with irqs disabled. This will ++ * protect us against recursive calling from irq. ++ */ ++asmlinkage void __sched preempt_schedule_irq(void) ++{ ++ struct thread_info *ti = current_thread_info(); ++ ++ /* Catch callers which need to be fixed */ ++ BUG_ON(ti->preempt_count || !irqs_disabled()); ++ ++ do { ++ add_preempt_count(PREEMPT_ACTIVE); ++ local_irq_enable(); ++ schedule(); ++ local_irq_disable(); ++ sub_preempt_count(PREEMPT_ACTIVE); ++ ++ /* ++ * Check again in case we missed a preemption opportunity ++ * between schedule and now. ++ */ ++ barrier(); ++ } while (need_resched()); ++} ++ ++#endif /* CONFIG_PREEMPT */ ++ ++int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, ++ void *key) ++{ ++ return try_to_wake_up(curr->private, mode, wake_flags); ++} ++EXPORT_SYMBOL(default_wake_function); ++ ++/* ++ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just ++ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve ++ * number) then we wake all the non-exclusive tasks and one exclusive task. ++ * ++ * There are circumstances in which we can try to wake a task which has already ++ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns ++ * zero in this (rare) case, and we handle it by continuing to scan the queue. ++ */ ++static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, ++ int nr_exclusive, int wake_flags, void *key) ++{ ++ struct list_head *tmp, *next; ++ ++ list_for_each_safe(tmp, next, &q->task_list) { ++ wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); ++ unsigned int flags = curr->flags; ++ ++ if (curr->func(curr, mode, wake_flags, key) && ++ (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) ++ break; ++ } ++} ++ ++/** ++ * __wake_up - wake up threads blocked on a waitqueue. ++ * @q: the waitqueue ++ * @mode: which threads ++ * @nr_exclusive: how many wake-one or wake-many threads to wake up ++ * @key: is directly passed to the wakeup function ++ * ++ * It may be assumed that this function implies a write memory barrier before ++ * changing the task state if and only if any tasks are woken up. ++ */ ++void __wake_up(wait_queue_head_t *q, unsigned int mode, ++ int nr_exclusive, void *key) ++{ ++ unsigned long flags; ++ ++ spin_lock_irqsave(&q->lock, flags); ++ __wake_up_common(q, mode, nr_exclusive, 0, key); ++ spin_unlock_irqrestore(&q->lock, flags); ++} ++EXPORT_SYMBOL(__wake_up); ++ ++/* ++ * Same as __wake_up but called with the spinlock in wait_queue_head_t held. ++ */ ++void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) ++{ ++ __wake_up_common(q, mode, 1, 0, NULL); ++} ++EXPORT_SYMBOL_GPL(__wake_up_locked); ++ ++void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) ++{ ++ __wake_up_common(q, mode, 1, 0, key); ++} ++ ++/** ++ * __wake_up_sync_key - wake up threads blocked on a waitqueue. ++ * @q: the waitqueue ++ * @mode: which threads ++ * @nr_exclusive: how many wake-one or wake-many threads to wake up ++ * @key: opaque value to be passed to wakeup targets ++ * ++ * The sync wakeup differs that the waker knows that it will schedule ++ * away soon, so while the target thread will be woken up, it will not ++ * be migrated to another CPU - ie. the two threads are 'synchronised' ++ * with each other. This can prevent needless bouncing between CPUs. ++ * ++ * On UP it can prevent extra preemption. ++ * ++ * It may be assumed that this function implies a write memory barrier before ++ * changing the task state if and only if any tasks are woken up. ++ */ ++void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, ++ int nr_exclusive, void *key) ++{ ++ unsigned long flags; ++ int wake_flags = WF_SYNC; ++ ++ if (unlikely(!q)) ++ return; ++ ++ if (unlikely(!nr_exclusive)) ++ wake_flags = 0; ++ ++ spin_lock_irqsave(&q->lock, flags); ++ __wake_up_common(q, mode, nr_exclusive, wake_flags, key); ++ spin_unlock_irqrestore(&q->lock, flags); ++} ++EXPORT_SYMBOL_GPL(__wake_up_sync_key); ++ ++/** ++ * __wake_up_sync - wake up threads blocked on a waitqueue. ++ * @q: the waitqueue ++ * @mode: which threads ++ * @nr_exclusive: how many wake-one or wake-many threads to wake up ++ * ++ * The sync wakeup differs that the waker knows that it will schedule ++ * away soon, so while the target thread will be woken up, it will not ++ * be migrated to another CPU - ie. the two threads are 'synchronised' ++ * with each other. This can prevent needless bouncing between CPUs. ++ * ++ * On UP it can prevent extra preemption. ++ */ ++void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) ++{ ++ unsigned long flags; ++ int sync = 1; ++ ++ if (unlikely(!q)) ++ return; ++ ++ if (unlikely(!nr_exclusive)) ++ sync = 0; ++ ++ spin_lock_irqsave(&q->lock, flags); ++ __wake_up_common(q, mode, nr_exclusive, sync, NULL); ++ spin_unlock_irqrestore(&q->lock, flags); ++} ++EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ ++ ++/** ++ * complete: - signals a single thread waiting on this completion ++ * @x: holds the state of this particular completion ++ * ++ * This will wake up a single thread waiting on this completion. Threads will be ++ * awakened in the same order in which they were queued. ++ * ++ * See also complete_all(), wait_for_completion() and related routines. ++ * ++ * It may be assumed that this function implies a write memory barrier before ++ * changing the task state if and only if any tasks are woken up. ++ */ ++void complete(struct completion *x) ++{ ++ unsigned long flags; ++ ++ spin_lock_irqsave(&x->wait.lock, flags); ++ x->done++; ++ __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); ++ spin_unlock_irqrestore(&x->wait.lock, flags); ++} ++EXPORT_SYMBOL(complete); ++ ++/** ++ * complete_all: - signals all threads waiting on this completion ++ * @x: holds the state of this particular completion ++ * ++ * This will wake up all threads waiting on this particular completion event. ++ * ++ * It may be assumed that this function implies a write memory barrier before ++ * changing the task state if and only if any tasks are woken up. ++ */ ++void complete_all(struct completion *x) ++{ ++ unsigned long flags; ++ ++ spin_lock_irqsave(&x->wait.lock, flags); ++ x->done += UINT_MAX/2; ++ __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); ++ spin_unlock_irqrestore(&x->wait.lock, flags); ++} ++EXPORT_SYMBOL(complete_all); ++ ++static inline long __sched ++do_wait_for_common(struct completion *x, long timeout, int state) ++{ ++ if (!x->done) { ++ DECLARE_WAITQUEUE(wait, current); ++ ++ __add_wait_queue_tail_exclusive(&x->wait, &wait); ++ do { ++ if (signal_pending_state(state, current)) { ++ timeout = -ERESTARTSYS; ++ break; ++ } ++ __set_current_state(state); ++ spin_unlock_irq(&x->wait.lock); ++ timeout = schedule_timeout(timeout); ++ spin_lock_irq(&x->wait.lock); ++ } while (!x->done && timeout); ++ __remove_wait_queue(&x->wait, &wait); ++ if (!x->done) ++ return timeout; ++ } ++ x->done--; ++ return timeout ?: 1; ++} ++ ++static long __sched ++wait_for_common(struct completion *x, long timeout, int state) ++{ ++ might_sleep(); ++ ++ spin_lock_irq(&x->wait.lock); ++ timeout = do_wait_for_common(x, timeout, state); ++ spin_unlock_irq(&x->wait.lock); ++ return timeout; ++} ++ ++/** ++ * wait_for_completion: - waits for completion of a task ++ * @x: holds the state of this particular completion ++ * ++ * This waits to be signaled for completion of a specific task. It is NOT ++ * interruptible and there is no timeout. ++ * ++ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout ++ * and interrupt capability. Also see complete(). ++ */ ++void __sched wait_for_completion(struct completion *x) ++{ ++ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); ++} ++EXPORT_SYMBOL(wait_for_completion); ++ ++/** ++ * wait_for_completion_timeout: - waits for completion of a task (w/timeout) ++ * @x: holds the state of this particular completion ++ * @timeout: timeout value in jiffies ++ * ++ * This waits for either a completion of a specific task to be signaled or for a ++ * specified timeout to expire. The timeout is in jiffies. It is not ++ * interruptible. ++ */ ++unsigned long __sched ++wait_for_completion_timeout(struct completion *x, unsigned long timeout) ++{ ++ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); ++} ++EXPORT_SYMBOL(wait_for_completion_timeout); ++ ++/** ++ * wait_for_completion_interruptible: - waits for completion of a task (w/intr) ++ * @x: holds the state of this particular completion ++ * ++ * This waits for completion of a specific task to be signaled. It is ++ * interruptible. ++ */ ++int __sched wait_for_completion_interruptible(struct completion *x) ++{ ++ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); ++ if (t == -ERESTARTSYS) ++ return t; ++ return 0; ++} ++EXPORT_SYMBOL(wait_for_completion_interruptible); ++ ++/** ++ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) ++ * @x: holds the state of this particular completion ++ * @timeout: timeout value in jiffies ++ * ++ * This waits for either a completion of a specific task to be signaled or for a ++ * specified timeout to expire. It is interruptible. The timeout is in jiffies. ++ */ ++unsigned long __sched ++wait_for_completion_interruptible_timeout(struct completion *x, ++ unsigned long timeout) ++{ ++ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); ++} ++EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); ++ ++/** ++ * wait_for_completion_killable: - waits for completion of a task (killable) ++ * @x: holds the state of this particular completion ++ * ++ * This waits to be signaled for completion of a specific task. It can be ++ * interrupted by a kill signal. ++ */ ++int __sched wait_for_completion_killable(struct completion *x) ++{ ++ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); ++ if (t == -ERESTARTSYS) ++ return t; ++ return 0; ++} ++EXPORT_SYMBOL(wait_for_completion_killable); ++ ++/** ++ * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) ++ * @x: holds the state of this particular completion ++ * @timeout: timeout value in jiffies ++ * ++ * This waits for either a completion of a specific task to be ++ * signaled or for a specified timeout to expire. It can be ++ * interrupted by a kill signal. The timeout is in jiffies. ++ */ ++unsigned long __sched ++wait_for_completion_killable_timeout(struct completion *x, ++ unsigned long timeout) ++{ ++ return wait_for_common(x, timeout, TASK_KILLABLE); ++} ++EXPORT_SYMBOL(wait_for_completion_killable_timeout); ++ ++/** ++ * try_wait_for_completion - try to decrement a completion without blocking ++ * @x: completion structure ++ * ++ * Returns: 0 if a decrement cannot be done without blocking ++ * 1 if a decrement succeeded. ++ * ++ * If a completion is being used as a counting completion, ++ * attempt to decrement the counter without blocking. This ++ * enables us to avoid waiting if the resource the completion ++ * is protecting is not available. ++ */ ++bool try_wait_for_completion(struct completion *x) ++{ ++ unsigned long flags; ++ int ret = 1; ++ ++ spin_lock_irqsave(&x->wait.lock, flags); ++ if (!x->done) ++ ret = 0; ++ else ++ x->done--; ++ spin_unlock_irqrestore(&x->wait.lock, flags); ++ return ret; ++} ++EXPORT_SYMBOL(try_wait_for_completion); ++ ++/** ++ * completion_done - Test to see if a completion has any waiters ++ * @x: completion structure ++ * ++ * Returns: 0 if there are waiters (wait_for_completion() in progress) ++ * 1 if there are no waiters. ++ * ++ */ ++bool completion_done(struct completion *x) ++{ ++ unsigned long flags; ++ int ret = 1; ++ ++ spin_lock_irqsave(&x->wait.lock, flags); ++ if (!x->done) ++ ret = 0; ++ spin_unlock_irqrestore(&x->wait.lock, flags); ++ return ret; ++} ++EXPORT_SYMBOL(completion_done); ++ ++static long __sched ++sleep_on_common(wait_queue_head_t *q, int state, long timeout) ++{ ++ unsigned long flags; ++ wait_queue_t wait; ++ ++ init_waitqueue_entry(&wait, current); ++ ++ __set_current_state(state); ++ ++ spin_lock_irqsave(&q->lock, flags); ++ __add_wait_queue(q, &wait); ++ spin_unlock(&q->lock); ++ timeout = schedule_timeout(timeout); ++ spin_lock_irq(&q->lock); ++ __remove_wait_queue(q, &wait); ++ spin_unlock_irqrestore(&q->lock, flags); ++ ++ return timeout; ++} ++ ++void __sched interruptible_sleep_on(wait_queue_head_t *q) ++{ ++ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); ++} ++EXPORT_SYMBOL(interruptible_sleep_on); ++ ++long __sched ++interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) ++{ ++ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); ++} ++EXPORT_SYMBOL(interruptible_sleep_on_timeout); ++ ++void __sched sleep_on(wait_queue_head_t *q) ++{ ++ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); ++} ++EXPORT_SYMBOL(sleep_on); ++ ++long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) ++{ ++ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); ++} ++EXPORT_SYMBOL(sleep_on_timeout); ++ ++#ifdef CONFIG_RT_MUTEXES ++ ++/* ++ * rt_mutex_setprio - set the current priority of a task ++ * @p: task ++ * @prio: prio value (kernel-internal form) ++ * ++ * This function changes the 'effective' priority of a task. It does ++ * not touch ->normal_prio like __setscheduler(). ++ * ++ * Used by the rt_mutex code to implement priority inheritance logic. ++ */ ++void rt_mutex_setprio(struct task_struct *p, int prio) ++{ ++ unsigned long flags; ++ int queued, oldprio; ++ struct rq *rq; ++ ++ BUG_ON(prio < 0 || prio > MAX_PRIO); ++ ++ rq = task_grq_lock(p, &flags); ++ ++ trace_sched_pi_setprio(p, prio); ++ oldprio = p->prio; ++ queued = task_queued(p); ++ if (queued) ++ dequeue_task(p); ++ p->prio = prio; ++ if (task_running(p) && prio > oldprio) ++ resched_task(p); ++ if (queued) { ++ enqueue_task(p); ++ try_preempt(p, rq); ++ } ++ ++ task_grq_unlock(&flags); ++} ++ ++#endif ++ ++/* ++ * Adjust the deadline for when the priority is to change, before it's ++ * changed. ++ */ ++static inline void adjust_deadline(struct task_struct *p, int new_prio) ++{ ++ p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p); ++} ++ ++void set_user_nice(struct task_struct *p, long nice) ++{ ++ int queued, new_static, old_static; ++ unsigned long flags; ++ struct rq *rq; ++ ++ if (TASK_NICE(p) == nice || nice < -20 || nice > 19) ++ return; ++ new_static = NICE_TO_PRIO(nice); ++ /* ++ * We have to be careful, if called from sys_setpriority(), ++ * the task might be in the middle of scheduling on another CPU. ++ */ ++ rq = time_task_grq_lock(p, &flags); ++ /* ++ * The RT priorities are set via sched_setscheduler(), but we still ++ * allow the 'normal' nice value to be set - but as expected ++ * it wont have any effect on scheduling until the task is ++ * not SCHED_NORMAL/SCHED_BATCH: ++ */ ++ if (has_rt_policy(p)) { ++ p->static_prio = new_static; ++ goto out_unlock; ++ } ++ queued = task_queued(p); ++ if (queued) ++ dequeue_task(p); ++ ++ adjust_deadline(p, new_static); ++ old_static = p->static_prio; ++ p->static_prio = new_static; ++ p->prio = effective_prio(p); ++ ++ if (queued) { ++ enqueue_task(p); ++ if (new_static < old_static) ++ try_preempt(p, rq); ++ } else if (task_running(p)) { ++ reset_rq_task(rq, p); ++ if (old_static < new_static) ++ resched_task(p); ++ } ++out_unlock: ++ task_grq_unlock(&flags); ++} ++EXPORT_SYMBOL(set_user_nice); ++ ++/* ++ * can_nice - check if a task can reduce its nice value ++ * @p: task ++ * @nice: nice value ++ */ ++int can_nice(const struct task_struct *p, const int nice) ++{ ++ /* convert nice value [19,-20] to rlimit style value [1,40] */ ++ int nice_rlim = 20 - nice; ++ ++ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || ++ capable(CAP_SYS_NICE)); ++} ++ ++#ifdef __ARCH_WANT_SYS_NICE ++ ++/* ++ * sys_nice - change the priority of the current process. ++ * @increment: priority increment ++ * ++ * sys_setpriority is a more generic, but much slower function that ++ * does similar things. ++ */ ++SYSCALL_DEFINE1(nice, int, increment) ++{ ++ long nice, retval; ++ ++ /* ++ * Setpriority might change our priority at the same moment. ++ * We don't have to worry. Conceptually one call occurs first ++ * and we have a single winner. ++ */ ++ if (increment < -40) ++ increment = -40; ++ if (increment > 40) ++ increment = 40; ++ ++ nice = TASK_NICE(current) + increment; ++ if (nice < -20) ++ nice = -20; ++ if (nice > 19) ++ nice = 19; ++ ++ if (increment < 0 && !can_nice(current, nice)) ++ return -EPERM; ++ ++ retval = security_task_setnice(current, nice); ++ if (retval) ++ return retval; ++ ++ set_user_nice(current, nice); ++ return 0; ++} ++ ++#endif ++ ++/** ++ * task_prio - return the priority value of a given task. ++ * @p: the task in question. ++ * ++ * This is the priority value as seen by users in /proc. ++ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes ++ * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO). ++ */ ++int task_prio(const struct task_struct *p) ++{ ++ int delta, prio = p->prio - MAX_RT_PRIO; ++ ++ /* rt tasks and iso tasks */ ++ if (prio <= 0) ++ goto out; ++ ++ /* Convert to ms to avoid overflows */ ++ delta = NS_TO_MS(p->deadline - grq.niffies); ++ delta = delta * 40 / ms_longest_deadline_diff(); ++ if (delta > 0 && delta <= 80) ++ prio += delta; ++ if (idleprio_task(p)) ++ prio += 40; ++out: ++ return prio; ++} ++ ++/** ++ * task_nice - return the nice value of a given task. ++ * @p: the task in question. ++ */ ++int task_nice(const struct task_struct *p) ++{ ++ return TASK_NICE(p); ++} ++EXPORT_SYMBOL_GPL(task_nice); ++ ++/** ++ * idle_cpu - is a given cpu idle currently? ++ * @cpu: the processor in question. ++ */ ++int idle_cpu(int cpu) ++{ ++ return cpu_curr(cpu) == cpu_rq(cpu)->idle; ++} ++ ++/** ++ * idle_task - return the idle task for a given cpu. ++ * @cpu: the processor in question. ++ */ ++struct task_struct *idle_task(int cpu) ++{ ++ return cpu_rq(cpu)->idle; ++} ++ ++/** ++ * find_process_by_pid - find a process with a matching PID value. ++ * @pid: the pid in question. ++ */ ++static inline struct task_struct *find_process_by_pid(pid_t pid) ++{ ++ return pid ? find_task_by_vpid(pid) : current; ++} ++ ++/* Actually do priority change: must hold grq lock. */ ++static void ++__setscheduler(struct task_struct *p, struct rq *rq, int policy, int prio) ++{ ++ int oldrtprio, oldprio; ++ ++ BUG_ON(task_queued(p)); ++ ++ p->policy = policy; ++ oldrtprio = p->rt_priority; ++ p->rt_priority = prio; ++ p->normal_prio = normal_prio(p); ++ oldprio = p->prio; ++ /* we are holding p->pi_lock already */ ++ p->prio = rt_mutex_getprio(p); ++ if (task_running(p)) { ++ reset_rq_task(rq, p); ++ /* Resched only if we might now be preempted */ ++ if (p->prio > oldprio || p->rt_priority > oldrtprio) ++ resched_task(p); ++ } ++} ++ ++/* ++ * check the target process has a UID that matches the current process's ++ */ ++static bool check_same_owner(struct task_struct *p) ++{ ++ const struct cred *cred = current_cred(), *pcred; ++ bool match; ++ ++ rcu_read_lock(); ++ pcred = __task_cred(p); ++ match = (cred->euid == pcred->euid || ++ cred->euid == pcred->uid); ++ rcu_read_unlock(); ++ return match; ++} ++ ++static int __sched_setscheduler(struct task_struct *p, int policy, ++ struct sched_param *param, bool user) ++{ ++ struct sched_param zero_param = { .sched_priority = 0 }; ++ int queued, retval, oldpolicy = -1; ++ unsigned long flags, rlim_rtprio = 0; ++ int reset_on_fork; ++ struct rq *rq; ++ ++ /* may grab non-irq protected spin_locks */ ++ BUG_ON(in_interrupt()); ++ ++ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) { ++ unsigned long lflags; ++ ++ if (!lock_task_sighand(p, &lflags)) ++ return -ESRCH; ++ rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); ++ unlock_task_sighand(p, &lflags); ++ if (rlim_rtprio) ++ goto recheck; ++ /* ++ * If the caller requested an RT policy without having the ++ * necessary rights, we downgrade the policy to SCHED_ISO. ++ * We also set the parameter to zero to pass the checks. ++ */ ++ policy = SCHED_ISO; ++ param = &zero_param; ++ } ++recheck: ++ /* double check policy once rq lock held */ ++ if (policy < 0) { ++ reset_on_fork = p->sched_reset_on_fork; ++ policy = oldpolicy = p->policy; ++ } else { ++ reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); ++ policy &= ~SCHED_RESET_ON_FORK; ++ ++ if (!SCHED_RANGE(policy)) ++ return -EINVAL; ++ } ++ ++ /* ++ * Valid priorities for SCHED_FIFO and SCHED_RR are ++ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and ++ * SCHED_BATCH is 0. ++ */ ++ if (param->sched_priority < 0 || ++ (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) || ++ (!p->mm && param->sched_priority > MAX_RT_PRIO - 1)) ++ return -EINVAL; ++ if (is_rt_policy(policy) != (param->sched_priority != 0)) ++ return -EINVAL; ++ ++ /* ++ * Allow unprivileged RT tasks to decrease priority: ++ */ ++ if (user && !capable(CAP_SYS_NICE)) { ++ if (is_rt_policy(policy)) { ++ unsigned long rlim_rtprio = ++ task_rlimit(p, RLIMIT_RTPRIO); ++ ++ /* can't set/change the rt policy */ ++ if (policy != p->policy && !rlim_rtprio) ++ return -EPERM; ++ ++ /* can't increase priority */ ++ if (param->sched_priority > p->rt_priority && ++ param->sched_priority > rlim_rtprio) ++ return -EPERM; ++ } else { ++ switch (p->policy) { ++ /* ++ * Can only downgrade policies but not back to ++ * SCHED_NORMAL ++ */ ++ case SCHED_ISO: ++ if (policy == SCHED_ISO) ++ goto out; ++ if (policy == SCHED_NORMAL) ++ return -EPERM; ++ break; ++ case SCHED_BATCH: ++ if (policy == SCHED_BATCH) ++ goto out; ++ if (policy != SCHED_IDLEPRIO) ++ return -EPERM; ++ break; ++ case SCHED_IDLEPRIO: ++ if (policy == SCHED_IDLEPRIO) ++ goto out; ++ return -EPERM; ++ default: ++ break; ++ } ++ } ++ ++ /* can't change other user's priorities */ ++ if (!check_same_owner(p)) ++ return -EPERM; ++ ++ /* Normal users shall not reset the sched_reset_on_fork flag */ ++ if (p->sched_reset_on_fork && !reset_on_fork) ++ return -EPERM; ++ } ++ ++ if (user) { ++ retval = security_task_setscheduler(p); ++ if (retval) ++ return retval; ++ } ++ ++ /* ++ * make sure no PI-waiters arrive (or leave) while we are ++ * changing the priority of the task: ++ */ ++ raw_spin_lock_irqsave(&p->pi_lock, flags); ++ /* ++ * To be able to change p->policy safely, the apropriate ++ * runqueue lock must be held. ++ */ ++ rq = __task_grq_lock(p); ++ ++ /* ++ * Changing the policy of the stop threads its a very bad idea ++ */ ++ if (p == rq->stop) { ++ __task_grq_unlock(); ++ raw_spin_unlock_irqrestore(&p->pi_lock, flags); ++ return -EINVAL; ++ } ++ ++ /* recheck policy now with rq lock held */ ++ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { ++ policy = oldpolicy = -1; ++ __task_grq_unlock(); ++ raw_spin_unlock_irqrestore(&p->pi_lock, flags); ++ goto recheck; ++ } ++ update_clocks(rq); ++ p->sched_reset_on_fork = reset_on_fork; ++ ++ queued = task_queued(p); ++ if (queued) ++ dequeue_task(p); ++ __setscheduler(p, rq, policy, param->sched_priority); ++ if (queued) { ++ enqueue_task(p); ++ try_preempt(p, rq); ++ } ++ __task_grq_unlock(); ++ raw_spin_unlock_irqrestore(&p->pi_lock, flags); ++ ++ rt_mutex_adjust_pi(p); ++out: ++ return 0; ++} ++ ++/** ++ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. ++ * @p: the task in question. ++ * @policy: new policy. ++ * @param: structure containing the new RT priority. ++ * ++ * NOTE that the task may be already dead. ++ */ ++int sched_setscheduler(struct task_struct *p, int policy, ++ struct sched_param *param) ++{ ++ return __sched_setscheduler(p, policy, param, true); ++} ++ ++EXPORT_SYMBOL_GPL(sched_setscheduler); ++ ++/** ++ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. ++ * @p: the task in question. ++ * @policy: new policy. ++ * @param: structure containing the new RT priority. ++ * ++ * Just like sched_setscheduler, only don't bother checking if the ++ * current context has permission. For example, this is needed in ++ * stop_machine(): we create temporary high priority worker threads, ++ * but our caller might not have that capability. ++ */ ++int sched_setscheduler_nocheck(struct task_struct *p, int policy, ++ struct sched_param *param) ++{ ++ return __sched_setscheduler(p, policy, param, false); ++} ++ ++static int ++do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) ++{ ++ struct sched_param lparam; ++ struct task_struct *p; ++ int retval; ++ ++ if (!param || pid < 0) ++ return -EINVAL; ++ if (copy_from_user(&lparam, param, sizeof(struct sched_param))) ++ return -EFAULT; ++ ++ rcu_read_lock(); ++ retval = -ESRCH; ++ p = find_process_by_pid(pid); ++ if (p != NULL) ++ retval = sched_setscheduler(p, policy, &lparam); ++ rcu_read_unlock(); ++ ++ return retval; ++} ++ ++/** ++ * sys_sched_setscheduler - set/change the scheduler policy and RT priority ++ * @pid: the pid in question. ++ * @policy: new policy. ++ * @param: structure containing the new RT priority. ++ */ ++asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, ++ struct sched_param __user *param) ++{ ++ /* negative values for policy are not valid */ ++ if (policy < 0) ++ return -EINVAL; ++ ++ return do_sched_setscheduler(pid, policy, param); ++} ++ ++/** ++ * sys_sched_setparam - set/change the RT priority of a thread ++ * @pid: the pid in question. ++ * @param: structure containing the new RT priority. ++ */ ++SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) ++{ ++ return do_sched_setscheduler(pid, -1, param); ++} ++ ++/** ++ * sys_sched_getscheduler - get the policy (scheduling class) of a thread ++ * @pid: the pid in question. ++ */ ++SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) ++{ ++ struct task_struct *p; ++ int retval = -EINVAL; ++ ++ if (pid < 0) ++ goto out_nounlock; ++ ++ retval = -ESRCH; ++ rcu_read_lock(); ++ p = find_process_by_pid(pid); ++ if (p) { ++ retval = security_task_getscheduler(p); ++ if (!retval) ++ retval = p->policy; ++ } ++ rcu_read_unlock(); ++ ++out_nounlock: ++ return retval; ++} ++ ++/** ++ * sys_sched_getscheduler - get the RT priority of a thread ++ * @pid: the pid in question. ++ * @param: structure containing the RT priority. ++ */ ++SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) ++{ ++ struct sched_param lp; ++ struct task_struct *p; ++ int retval = -EINVAL; ++ ++ if (!param || pid < 0) ++ goto out_nounlock; ++ ++ rcu_read_lock(); ++ p = find_process_by_pid(pid); ++ retval = -ESRCH; ++ if (!p) ++ goto out_unlock; ++ ++ retval = security_task_getscheduler(p); ++ if (retval) ++ goto out_unlock; ++ ++ lp.sched_priority = p->rt_priority; ++ rcu_read_unlock(); ++ ++ /* ++ * This one might sleep, we cannot do it with a spinlock held ... ++ */ ++ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; ++ ++out_nounlock: ++ return retval; ++ ++out_unlock: ++ rcu_read_unlock(); ++ return retval; ++} ++ ++long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) ++{ ++ cpumask_var_t cpus_allowed, new_mask; ++ struct task_struct *p; ++ int retval; ++ ++ get_online_cpus(); ++ rcu_read_lock(); ++ ++ p = find_process_by_pid(pid); ++ if (!p) { ++ rcu_read_unlock(); ++ put_online_cpus(); ++ return -ESRCH; ++ } ++ ++ /* Prevent p going away */ ++ get_task_struct(p); ++ rcu_read_unlock(); ++ ++ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { ++ retval = -ENOMEM; ++ goto out_put_task; ++ } ++ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { ++ retval = -ENOMEM; ++ goto out_free_cpus_allowed; ++ } ++ retval = -EPERM; ++ if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) ++ goto out_unlock; ++ ++ retval = security_task_setscheduler(p); ++ if (retval) ++ goto out_unlock; ++ ++ cpuset_cpus_allowed(p, cpus_allowed); ++ cpumask_and(new_mask, in_mask, cpus_allowed); ++again: ++ retval = set_cpus_allowed_ptr(p, new_mask); ++ ++ if (!retval) { ++ cpuset_cpus_allowed(p, cpus_allowed); ++ if (!cpumask_subset(new_mask, cpus_allowed)) { ++ /* ++ * We must have raced with a concurrent cpuset ++ * update. Just reset the cpus_allowed to the ++ * cpuset's cpus_allowed ++ */ ++ cpumask_copy(new_mask, cpus_allowed); ++ goto again; ++ } ++ } ++out_unlock: ++ free_cpumask_var(new_mask); ++out_free_cpus_allowed: ++ free_cpumask_var(cpus_allowed); ++out_put_task: ++ put_task_struct(p); ++ put_online_cpus(); ++ return retval; ++} ++ ++static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, ++ cpumask_t *new_mask) ++{ ++ if (len < sizeof(cpumask_t)) { ++ memset(new_mask, 0, sizeof(cpumask_t)); ++ } else if (len > sizeof(cpumask_t)) { ++ len = sizeof(cpumask_t); ++ } ++ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; ++} ++ ++ ++/** ++ * sys_sched_setaffinity - set the cpu affinity of a process ++ * @pid: pid of the process ++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr ++ * @user_mask_ptr: user-space pointer to the new cpu mask ++ */ ++SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, ++ unsigned long __user *, user_mask_ptr) ++{ ++ cpumask_var_t new_mask; ++ int retval; ++ ++ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) ++ return -ENOMEM; ++ ++ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); ++ if (retval == 0) ++ retval = sched_setaffinity(pid, new_mask); ++ free_cpumask_var(new_mask); ++ return retval; ++} ++ ++long sched_getaffinity(pid_t pid, cpumask_t *mask) ++{ ++ struct task_struct *p; ++ unsigned long flags; ++ struct rq *rq; ++ int retval; ++ ++ get_online_cpus(); ++ rcu_read_lock(); ++ ++ retval = -ESRCH; ++ p = find_process_by_pid(pid); ++ if (!p) ++ goto out_unlock; ++ ++ retval = security_task_getscheduler(p); ++ if (retval) ++ goto out_unlock; ++ ++ rq = task_grq_lock(p, &flags); ++ cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); ++ task_grq_unlock(&flags); ++ ++out_unlock: ++ rcu_read_unlock(); ++ put_online_cpus(); ++ ++ return retval; ++} ++ ++/** ++ * sys_sched_getaffinity - get the cpu affinity of a process ++ * @pid: pid of the process ++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr ++ * @user_mask_ptr: user-space pointer to hold the current cpu mask ++ */ ++SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, ++ unsigned long __user *, user_mask_ptr) ++{ ++ int ret; ++ cpumask_var_t mask; ++ ++ if ((len * BITS_PER_BYTE) < nr_cpu_ids) ++ return -EINVAL; ++ if (len & (sizeof(unsigned long)-1)) ++ return -EINVAL; ++ ++ if (!alloc_cpumask_var(&mask, GFP_KERNEL)) ++ return -ENOMEM; ++ ++ ret = sched_getaffinity(pid, mask); ++ if (ret == 0) { ++ size_t retlen = min_t(size_t, len, cpumask_size()); ++ ++ if (copy_to_user(user_mask_ptr, mask, retlen)) ++ ret = -EFAULT; ++ else ++ ret = retlen; ++ } ++ free_cpumask_var(mask); ++ ++ return ret; ++} ++ ++/** ++ * sys_sched_yield - yield the current processor to other threads. ++ * ++ * This function yields the current CPU to other tasks. It does this by ++ * scheduling away the current task. If it still has the earliest deadline ++ * it will be scheduled again as the next task. ++ */ ++SYSCALL_DEFINE0(sched_yield) ++{ ++ struct task_struct *p; ++ struct rq *rq; ++ ++ p = current; ++ rq = task_grq_lock_irq(p); ++ schedstat_inc(rq, yld_count); ++ requeue_task(p); ++ ++ /* ++ * Since we are going to call schedule() anyway, there's ++ * no need to preempt or enable interrupts: ++ */ ++ __release(grq.lock); ++ spin_release(&grq.lock.dep_map, 1, _THIS_IP_); ++ do_raw_spin_unlock(&grq.lock); ++ preempt_enable_no_resched(); ++ ++ schedule(); ++ ++ return 0; ++} ++ ++static inline int should_resched(void) ++{ ++ return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); ++} ++ ++static void __cond_resched(void) ++{ ++ /* NOT a real fix but will make voluntary preempt work. 馬鹿な事 */ ++ if (unlikely(system_state != SYSTEM_RUNNING)) ++ return; ++ ++ add_preempt_count(PREEMPT_ACTIVE); ++ schedule(); ++ sub_preempt_count(PREEMPT_ACTIVE); ++} ++ ++int __sched _cond_resched(void) ++{ ++ if (should_resched()) { ++ __cond_resched(); ++ return 1; ++ } ++ return 0; ++} ++EXPORT_SYMBOL(_cond_resched); ++ ++/* ++ * __cond_resched_lock() - if a reschedule is pending, drop the given lock, ++ * call schedule, and on return reacquire the lock. ++ * ++ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level ++ * operations here to prevent schedule() from being called twice (once via ++ * spin_unlock(), once by hand). ++ */ ++int __cond_resched_lock(spinlock_t *lock) ++{ ++ int resched = should_resched(); ++ int ret = 0; ++ ++ lockdep_assert_held(lock); ++ ++ if (spin_needbreak(lock) || resched) { ++ spin_unlock(lock); ++ if (resched) ++ __cond_resched(); ++ else ++ cpu_relax(); ++ ret = 1; ++ spin_lock(lock); ++ } ++ return ret; ++} ++EXPORT_SYMBOL(__cond_resched_lock); ++ ++int __sched __cond_resched_softirq(void) ++{ ++ BUG_ON(!in_softirq()); ++ ++ if (should_resched()) { ++ local_bh_enable(); ++ __cond_resched(); ++ local_bh_disable(); ++ return 1; ++ } ++ return 0; ++} ++EXPORT_SYMBOL(__cond_resched_softirq); ++ ++/** ++ * yield - yield the current processor to other threads. ++ * ++ * This is a shortcut for kernel-space yielding - it marks the ++ * thread runnable and calls sys_sched_yield(). ++ */ ++void __sched yield(void) ++{ ++ set_current_state(TASK_RUNNING); ++ sys_sched_yield(); ++} ++EXPORT_SYMBOL(yield); ++ ++/* ++ * This task is about to go to sleep on IO. Increment rq->nr_iowait so ++ * that process accounting knows that this is a task in IO wait state. ++ * ++ * But don't do that if it is a deliberate, throttling IO wait (this task ++ * has set its backing_dev_info: the queue against which it should throttle) ++ */ ++void __sched io_schedule(void) ++{ ++ struct rq *rq = raw_rq(); ++ ++ delayacct_blkio_start(); ++ atomic_inc(&rq->nr_iowait); ++ current->in_iowait = 1; ++ schedule(); ++ current->in_iowait = 0; ++ atomic_dec(&rq->nr_iowait); ++ delayacct_blkio_end(); ++} ++EXPORT_SYMBOL(io_schedule); ++ ++long __sched io_schedule_timeout(long timeout) ++{ ++ struct rq *rq = raw_rq(); ++ long ret; ++ ++ delayacct_blkio_start(); ++ atomic_inc(&rq->nr_iowait); ++ current->in_iowait = 1; ++ ret = schedule_timeout(timeout); ++ current->in_iowait = 0; ++ atomic_dec(&rq->nr_iowait); ++ delayacct_blkio_end(); ++ return ret; ++} ++ ++/** ++ * sys_sched_get_priority_max - return maximum RT priority. ++ * @policy: scheduling class. ++ * ++ * this syscall returns the maximum rt_priority that can be used ++ * by a given scheduling class. ++ */ ++SYSCALL_DEFINE1(sched_get_priority_max, int, policy) ++{ ++ int ret = -EINVAL; ++ ++ switch (policy) { ++ case SCHED_FIFO: ++ case SCHED_RR: ++ ret = MAX_USER_RT_PRIO-1; ++ break; ++ case SCHED_NORMAL: ++ case SCHED_BATCH: ++ case SCHED_ISO: ++ case SCHED_IDLEPRIO: ++ ret = 0; ++ break; ++ } ++ return ret; ++} ++ ++/** ++ * sys_sched_get_priority_min - return minimum RT priority. ++ * @policy: scheduling class. ++ * ++ * this syscall returns the minimum rt_priority that can be used ++ * by a given scheduling class. ++ */ ++SYSCALL_DEFINE1(sched_get_priority_min, int, policy) ++{ ++ int ret = -EINVAL; ++ ++ switch (policy) { ++ case SCHED_FIFO: ++ case SCHED_RR: ++ ret = 1; ++ break; ++ case SCHED_NORMAL: ++ case SCHED_BATCH: ++ case SCHED_ISO: ++ case SCHED_IDLEPRIO: ++ ret = 0; ++ break; ++ } ++ return ret; ++} ++ ++/** ++ * sys_sched_rr_get_interval - return the default timeslice of a process. ++ * @pid: pid of the process. ++ * @interval: userspace pointer to the timeslice value. ++ * ++ * this syscall writes the default timeslice value of a given process ++ * into the user-space timespec buffer. A value of '0' means infinity. ++ */ ++SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, ++ struct timespec __user *, interval) ++{ ++ struct task_struct *p; ++ unsigned int time_slice; ++ unsigned long flags; ++ struct rq *rq; ++ int retval; ++ struct timespec t; ++ ++ if (pid < 0) ++ return -EINVAL; ++ ++ retval = -ESRCH; ++ rcu_read_lock(); ++ p = find_process_by_pid(pid); ++ if (!p) ++ goto out_unlock; ++ ++ retval = security_task_getscheduler(p); ++ if (retval) ++ goto out_unlock; ++ ++ rq = task_grq_lock(p, &flags); ++ time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p)); ++ task_grq_unlock(&flags); ++ ++ rcu_read_unlock(); ++ t = ns_to_timespec(time_slice); ++ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; ++ return retval; ++ ++out_unlock: ++ rcu_read_unlock(); ++ return retval; ++} ++ ++static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; ++ ++void sched_show_task(struct task_struct *p) ++{ ++ unsigned long free = 0; ++ unsigned state; ++ ++ state = p->state ? __ffs(p->state) + 1 : 0; ++ printk(KERN_INFO "%-13.13s %c", p->comm, ++ state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); ++#if BITS_PER_LONG == 32 ++ if (state == TASK_RUNNING) ++ printk(KERN_CONT " running "); ++ else ++ printk(KERN_CONT " %08lx ", thread_saved_pc(p)); ++#else ++ if (state == TASK_RUNNING) ++ printk(KERN_CONT " running task "); ++ else ++ printk(KERN_CONT " %016lx ", thread_saved_pc(p)); ++#endif ++#ifdef CONFIG_DEBUG_STACK_USAGE ++ free = stack_not_used(p); ++#endif ++ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, ++ task_pid_nr(p), task_pid_nr(p->real_parent), ++ (unsigned long)task_thread_info(p)->flags); ++ ++ show_stack(p, NULL); ++} ++ ++void show_state_filter(unsigned long state_filter) ++{ ++ struct task_struct *g, *p; ++ ++#if BITS_PER_LONG == 32 ++ printk(KERN_INFO ++ " task PC stack pid father\n"); ++#else ++ printk(KERN_INFO ++ " task PC stack pid father\n"); ++#endif ++ read_lock(&tasklist_lock); ++ do_each_thread(g, p) { ++ /* ++ * reset the NMI-timeout, listing all files on a slow ++ * console might take alot of time: ++ */ ++ touch_nmi_watchdog(); ++ if (!state_filter || (p->state & state_filter)) ++ sched_show_task(p); ++ } while_each_thread(g, p); ++ ++ touch_all_softlockup_watchdogs(); ++ ++ read_unlock(&tasklist_lock); ++ /* ++ * Only show locks if all tasks are dumped: ++ */ ++ if (!state_filter) ++ debug_show_all_locks(); ++} ++ ++/** ++ * init_idle - set up an idle thread for a given CPU ++ * @idle: task in question ++ * @cpu: cpu the idle task belongs to ++ * ++ * NOTE: this function does not set the idle thread's NEED_RESCHED ++ * flag, to make booting more robust. ++ */ ++void init_idle(struct task_struct *idle, int cpu) ++{ ++ struct rq *rq = cpu_rq(cpu); ++ unsigned long flags; ++ ++ time_grq_lock(rq, &flags); ++ idle->last_ran = rq->clock; ++ idle->state = TASK_RUNNING; ++ /* Setting prio to illegal value shouldn't matter when never queued */ ++ idle->prio = PRIO_LIMIT; ++ set_rq_task(rq, idle); ++ idle->cpus_allowed = cpumask_of_cpu(cpu); ++ /* Silence PROVE_RCU */ ++ rcu_read_lock(); ++ set_task_cpu(idle, cpu); ++ rcu_read_unlock(); ++ rq->curr = rq->idle = idle; ++ idle->oncpu = 1; ++ set_cpuidle_map(cpu); ++ grq_unlock_irqrestore(&flags); ++ ++ /* Set the preempt count _outside_ the spinlocks! */ ++#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) ++ task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); ++#else ++ task_thread_info(idle)->preempt_count = 0; ++#endif ++ ftrace_graph_init_task(idle); ++} ++ ++/* ++ * In a system that switches off the HZ timer nohz_cpu_mask ++ * indicates which cpus entered this state. This is used ++ * in the rcu update to wait only for active cpus. For system ++ * which do not switch off the HZ timer nohz_cpu_mask should ++ * always be CPU_BITS_NONE. ++ */ ++cpumask_var_t nohz_cpu_mask; ++ ++#ifdef CONFIG_SMP ++#ifdef CONFIG_NO_HZ ++void select_nohz_load_balancer(int stop_tick) ++{ ++} ++#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) ++/** ++ * lowest_flag_domain - Return lowest sched_domain containing flag. ++ * @cpu: The cpu whose lowest level of sched domain is to ++ * be returned. ++ * @flag: The flag to check for the lowest sched_domain ++ * for the given cpu. ++ * ++ * Returns the lowest sched_domain of a cpu which contains the given flag. ++ */ ++static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) ++{ ++ struct sched_domain *sd; ++ ++ for_each_domain(cpu, sd) ++ if (sd && (sd->flags & flag)) ++ break; ++ ++ return sd; ++} ++ ++/** ++ * for_each_flag_domain - Iterates over sched_domains containing the flag. ++ * @cpu: The cpu whose domains we're iterating over. ++ * @sd: variable holding the value of the power_savings_sd ++ * for cpu. ++ * @flag: The flag to filter the sched_domains to be iterated. ++ * ++ * Iterates over all the scheduler domains for a given cpu that has the 'flag' ++ * set, starting from the lowest sched_domain to the highest. ++ */ ++#define for_each_flag_domain(cpu, sd, flag) \ ++ for (sd = lowest_flag_domain(cpu, flag); \ ++ (sd && (sd->flags & flag)); sd = sd->parent) ++ ++#endif /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ ++ ++static inline void resched_cpu(int cpu) ++{ ++ unsigned long flags; ++ ++ grq_lock_irqsave(&flags); ++ resched_task(cpu_curr(cpu)); ++ grq_unlock_irqrestore(&flags); ++} ++ ++/* ++ * In the semi idle case, use the nearest busy cpu for migrating timers ++ * from an idle cpu. This is good for power-savings. ++ * ++ * We don't do similar optimization for completely idle system, as ++ * selecting an idle cpu will add more delays to the timers than intended ++ * (as that cpu's timer base may not be uptodate wrt jiffies etc). ++ */ ++int get_nohz_timer_target(void) ++{ ++ int cpu = smp_processor_id(); ++ int i; ++ struct sched_domain *sd; ++ ++ for_each_domain(cpu, sd) { ++ for_each_cpu(i, sched_domain_span(sd)) ++ if (!idle_cpu(i)) ++ return i; ++ } ++ return cpu; ++} ++ ++/* ++ * When add_timer_on() enqueues a timer into the timer wheel of an ++ * idle CPU then this timer might expire before the next timer event ++ * which is scheduled to wake up that CPU. In case of a completely ++ * idle system the next event might even be infinite time into the ++ * future. wake_up_idle_cpu() ensures that the CPU is woken up and ++ * leaves the inner idle loop so the newly added timer is taken into ++ * account when the CPU goes back to idle and evaluates the timer ++ * wheel for the next timer event. ++ */ ++void wake_up_idle_cpu(int cpu) ++{ ++ struct task_struct *idle; ++ struct rq *rq; ++ ++ if (cpu == smp_processor_id()) ++ return; ++ ++ rq = cpu_rq(cpu); ++ idle = rq->idle; ++ ++ /* ++ * This is safe, as this function is called with the timer ++ * wheel base lock of (cpu) held. When the CPU is on the way ++ * to idle and has not yet set rq->curr to idle then it will ++ * be serialised on the timer wheel base lock and take the new ++ * timer into account automatically. ++ */ ++ if (unlikely(rq->curr != idle)) ++ return; ++ ++ /* ++ * We can set TIF_RESCHED on the idle task of the other CPU ++ * lockless. The worst case is that the other CPU runs the ++ * idle task through an additional NOOP schedule() ++ */ ++ set_tsk_need_resched(idle); ++ ++ /* NEED_RESCHED must be visible before we test polling */ ++ smp_mb(); ++ if (!tsk_is_polling(idle)) ++ smp_send_reschedule(cpu); ++} ++ ++#endif /* CONFIG_NO_HZ */ ++ ++/* ++ * Change a given task's CPU affinity. Migrate the thread to a ++ * proper CPU and schedule it away if the CPU it's executing on ++ * is removed from the allowed bitmask. ++ * ++ * NOTE: the caller must have a valid reference to the task, the ++ * task must not exit() & deallocate itself prematurely. The ++ * call is not atomic; no spinlocks may be held. ++ */ ++int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) ++{ ++ unsigned long flags; ++ int running_wrong = 0; ++ int queued = 0; ++ struct rq *rq; ++ int ret = 0; ++ ++ rq = task_grq_lock(p, &flags); ++ ++ if (!cpumask_intersects(new_mask, cpu_active_mask)) { ++ ret = -EINVAL; ++ goto out; ++ } ++ ++ if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && ++ !cpumask_equal(&p->cpus_allowed, new_mask))) { ++ ret = -EINVAL; ++ goto out; ++ } ++ ++ queued = task_queued(p); ++ ++ cpumask_copy(&p->cpus_allowed, new_mask); ++ ++ /* Can the task run on the task's current CPU? If so, we're done */ ++ if (cpumask_test_cpu(task_cpu(p), new_mask)) ++ goto out; ++ ++ if (task_running(p)) { ++ /* Task is running on the wrong cpu now, reschedule it. */ ++ if (rq == this_rq()) { ++ set_tsk_need_resched(p); ++ running_wrong = 1; ++ } else ++ resched_task(p); ++ } else ++ set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask)); ++ ++out: ++ if (queued) ++ try_preempt(p, rq); ++ task_grq_unlock(&flags); ++ ++ if (running_wrong) ++ _cond_resched(); ++ ++ return ret; ++} ++EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); ++ ++#ifdef CONFIG_HOTPLUG_CPU ++/* ++ * Reschedule a task if it's on a dead CPU. ++ */ ++void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) ++{ ++ unsigned long flags; ++ struct rq *rq, *dead_rq; ++ ++ dead_rq = cpu_rq(dead_cpu); ++ rq = task_grq_lock(p, &flags); ++ if (rq == dead_rq && task_running(p)) ++ resched_task(p); ++ task_grq_unlock(&flags); ++ ++} ++ ++/* Run through task list and find tasks affined to just the dead cpu, then ++ * allocate a new affinity */ ++static void break_sole_affinity(int src_cpu) ++{ ++ struct task_struct *p, *t; ++ ++ do_each_thread(t, p) { ++ if (!online_cpus(p)) { ++ cpumask_copy(&p->cpus_allowed, cpu_possible_mask); ++ /* ++ * Don't tell them about moving exiting tasks or ++ * kernel threads (both mm NULL), since they never ++ * leave kernel. ++ */ ++ if (p->mm && printk_ratelimit()) { ++ printk(KERN_INFO "process %d (%s) no " ++ "longer affine to cpu %d\n", ++ task_pid_nr(p), p->comm, src_cpu); ++ } ++ } ++ } while_each_thread(t, p); ++} ++ ++/* ++ * Schedules idle task to be the next runnable task on current CPU. ++ * It does so by boosting its priority to highest possible. ++ * Used by CPU offline code. ++ */ ++void sched_idle_next(void) ++{ ++ int this_cpu = smp_processor_id(); ++ struct rq *rq = cpu_rq(this_cpu); ++ struct task_struct *idle = rq->idle; ++ unsigned long flags; ++ ++ /* cpu has to be offline */ ++ BUG_ON(cpu_online(this_cpu)); ++ ++ /* ++ * Strictly not necessary since rest of the CPUs are stopped by now ++ * and interrupts disabled on the current cpu. ++ */ ++ grq_lock_irqsave(&flags); ++ break_sole_affinity(this_cpu); ++ ++ __setscheduler(idle, rq, SCHED_FIFO, STOP_PRIO); ++ ++ activate_idle_task(idle); ++ set_tsk_need_resched(rq->curr); ++ ++ grq_unlock_irqrestore(&flags); ++} ++ ++/* ++ * Ensures that the idle task is using init_mm right before its cpu goes ++ * offline. ++ */ ++void idle_task_exit(void) ++{ ++ struct mm_struct *mm = current->active_mm; ++ ++ BUG_ON(cpu_online(smp_processor_id())); ++ ++ if (mm != &init_mm) ++ switch_mm(mm, &init_mm, current); ++ mmdrop(mm); ++} ++ ++#endif /* CONFIG_HOTPLUG_CPU */ ++ ++void sched_set_stop_task(int cpu, struct task_struct *stop) ++{ ++ struct sched_param stop_param = { .sched_priority = STOP_PRIO }; ++ struct sched_param start_param = { .sched_priority = MAX_USER_RT_PRIO - 1 }; ++ struct task_struct *old_stop = cpu_rq(cpu)->stop; ++ ++ if (stop) { ++ /* ++ * Make it appear like a SCHED_FIFO task, its something ++ * userspace knows about and won't get confused about. ++ * ++ * Also, it will make PI more or less work without too ++ * much confusion -- but then, stop work should not ++ * rely on PI working anyway. ++ */ ++ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param); ++ } ++ ++ cpu_rq(cpu)->stop = stop; ++ ++ if (old_stop) { ++ /* ++ * Reset it back to a normal rt scheduling prio so that ++ * it can die in pieces. ++ */ ++ sched_setscheduler_nocheck(old_stop, SCHED_FIFO, &start_param); ++ } ++} ++ ++#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) ++ ++static struct ctl_table sd_ctl_dir[] = { ++ { ++ .procname = "sched_domain", ++ .mode = 0555, ++ }, ++ {} ++}; ++ ++static struct ctl_table sd_ctl_root[] = { ++ { ++ .procname = "kernel", ++ .mode = 0555, ++ .child = sd_ctl_dir, ++ }, ++ {} ++}; ++ ++static struct ctl_table *sd_alloc_ctl_entry(int n) ++{ ++ struct ctl_table *entry = ++ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); ++ ++ return entry; ++} ++ ++static void sd_free_ctl_entry(struct ctl_table **tablep) ++{ ++ struct ctl_table *entry; ++ ++ /* ++ * In the intermediate directories, both the child directory and ++ * procname are dynamically allocated and could fail but the mode ++ * will always be set. In the lowest directory the names are ++ * static strings and all have proc handlers. ++ */ ++ for (entry = *tablep; entry->mode; entry++) { ++ if (entry->child) ++ sd_free_ctl_entry(&entry->child); ++ if (entry->proc_handler == NULL) ++ kfree(entry->procname); ++ } ++ ++ kfree(*tablep); ++ *tablep = NULL; ++} ++ ++static void ++set_table_entry(struct ctl_table *entry, ++ const char *procname, void *data, int maxlen, ++ mode_t mode, proc_handler *proc_handler) ++{ ++ entry->procname = procname; ++ entry->data = data; ++ entry->maxlen = maxlen; ++ entry->mode = mode; ++ entry->proc_handler = proc_handler; ++} ++ ++static struct ctl_table * ++sd_alloc_ctl_domain_table(struct sched_domain *sd) ++{ ++ struct ctl_table *table = sd_alloc_ctl_entry(13); ++ ++ if (table == NULL) ++ return NULL; ++ ++ set_table_entry(&table[0], "min_interval", &sd->min_interval, ++ sizeof(long), 0644, proc_doulongvec_minmax); ++ set_table_entry(&table[1], "max_interval", &sd->max_interval, ++ sizeof(long), 0644, proc_doulongvec_minmax); ++ set_table_entry(&table[2], "busy_idx", &sd->busy_idx, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[3], "idle_idx", &sd->idle_idx, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[5], "wake_idx", &sd->wake_idx, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[7], "busy_factor", &sd->busy_factor, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[9], "cache_nice_tries", ++ &sd->cache_nice_tries, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[10], "flags", &sd->flags, ++ sizeof(int), 0644, proc_dointvec_minmax); ++ set_table_entry(&table[11], "name", sd->name, ++ CORENAME_MAX_SIZE, 0444, proc_dostring); ++ /* &table[12] is terminator */ ++ ++ return table; ++} ++ ++static ctl_table *sd_alloc_ctl_cpu_table(int cpu) ++{ ++ struct ctl_table *entry, *table; ++ struct sched_domain *sd; ++ int domain_num = 0, i; ++ char buf[32]; ++ ++ for_each_domain(cpu, sd) ++ domain_num++; ++ entry = table = sd_alloc_ctl_entry(domain_num + 1); ++ if (table == NULL) ++ return NULL; ++ ++ i = 0; ++ for_each_domain(cpu, sd) { ++ snprintf(buf, 32, "domain%d", i); ++ entry->procname = kstrdup(buf, GFP_KERNEL); ++ entry->mode = 0555; ++ entry->child = sd_alloc_ctl_domain_table(sd); ++ entry++; ++ i++; ++ } ++ return table; ++} ++ ++static struct ctl_table_header *sd_sysctl_header; ++static void register_sched_domain_sysctl(void) ++{ ++ int i, cpu_num = num_possible_cpus(); ++ struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); ++ char buf[32]; ++ ++ WARN_ON(sd_ctl_dir[0].child); ++ sd_ctl_dir[0].child = entry; ++ ++ if (entry == NULL) ++ return; ++ ++ for_each_possible_cpu(i) { ++ snprintf(buf, 32, "cpu%d", i); ++ entry->procname = kstrdup(buf, GFP_KERNEL); ++ entry->mode = 0555; ++ entry->child = sd_alloc_ctl_cpu_table(i); ++ entry++; ++ } ++ ++ WARN_ON(sd_sysctl_header); ++ sd_sysctl_header = register_sysctl_table(sd_ctl_root); ++} ++ ++/* may be called multiple times per register */ ++static void unregister_sched_domain_sysctl(void) ++{ ++ if (sd_sysctl_header) ++ unregister_sysctl_table(sd_sysctl_header); ++ sd_sysctl_header = NULL; ++ if (sd_ctl_dir[0].child) ++ sd_free_ctl_entry(&sd_ctl_dir[0].child); ++} ++#else ++static void register_sched_domain_sysctl(void) ++{ ++} ++static void unregister_sched_domain_sysctl(void) ++{ ++} ++#endif ++ ++static void set_rq_online(struct rq *rq) ++{ ++ if (!rq->online) { ++ cpumask_set_cpu(cpu_of(rq), rq->rd->online); ++ rq->online = 1; ++ } ++} ++ ++static void set_rq_offline(struct rq *rq) ++{ ++ if (rq->online) { ++ cpumask_clear_cpu(cpu_of(rq), rq->rd->online); ++ rq->online = 0; ++ } ++} ++ ++/* ++ * migration_call - callback that gets triggered when a CPU is added. ++ */ ++static int __cpuinit ++migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) ++{ ++#ifdef CONFIG_HOTPLUG_CPU ++ struct task_struct *idle; ++#endif ++ int cpu = (long)hcpu; ++ unsigned long flags; ++ struct rq *rq = cpu_rq(cpu); ++ ++ switch (action) { ++ ++ case CPU_UP_PREPARE: ++ case CPU_UP_PREPARE_FROZEN: ++ break; ++ ++ case CPU_ONLINE: ++ case CPU_ONLINE_FROZEN: ++ /* Update our root-domain */ ++ grq_lock_irqsave(&flags); ++ if (rq->rd) { ++ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); ++ ++ set_rq_online(rq); ++ } ++ grq_unlock_irqrestore(&flags); ++ break; ++ ++#ifdef CONFIG_HOTPLUG_CPU ++ case CPU_DEAD: ++ case CPU_DEAD_FROZEN: ++ idle = rq->idle; ++ /* Idle task back to normal (off runqueue, low prio) */ ++ grq_lock_irq(); ++ return_task(idle, 1); ++ idle->static_prio = MAX_PRIO; ++ __setscheduler(idle, rq, SCHED_NORMAL, 0); ++ idle->prio = PRIO_LIMIT; ++ set_rq_task(rq, idle); ++ update_clocks(rq); ++ grq_unlock_irq(); ++ break; ++ ++ case CPU_DYING: ++ case CPU_DYING_FROZEN: ++ /* Update our root-domain */ ++ grq_lock_irqsave(&flags); ++ if (rq->rd) { ++ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); ++ set_rq_offline(rq); ++ } ++ grq_unlock_irqrestore(&flags); ++ break; ++#endif ++ } ++ return NOTIFY_OK; ++} ++ ++/* ++ * Register at high priority so that task migration (migrate_all_tasks) ++ * happens before everything else. This has to be lower priority than ++ * the notifier in the perf_counter subsystem, though. ++ */ ++static struct notifier_block __cpuinitdata migration_notifier = { ++ .notifier_call = migration_call, ++ .priority = CPU_PRI_MIGRATION, ++}; ++ ++static int __cpuinit sched_cpu_active(struct notifier_block *nfb, ++ unsigned long action, void *hcpu) ++{ ++ switch (action & ~CPU_TASKS_FROZEN) { ++ case CPU_ONLINE: ++ case CPU_DOWN_FAILED: ++ set_cpu_active((long)hcpu, true); ++ return NOTIFY_OK; ++ default: ++ return NOTIFY_DONE; ++ } ++} ++ ++static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, ++ unsigned long action, void *hcpu) ++{ ++ switch (action & ~CPU_TASKS_FROZEN) { ++ case CPU_DOWN_PREPARE: ++ set_cpu_active((long)hcpu, false); ++ return NOTIFY_OK; ++ default: ++ return NOTIFY_DONE; ++ } ++} ++ ++int __init migration_init(void) ++{ ++ void *cpu = (void *)(long)smp_processor_id(); ++ int err; ++ ++ /* Initialise migration for the boot CPU */ ++ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); ++ BUG_ON(err == NOTIFY_BAD); ++ migration_call(&migration_notifier, CPU_ONLINE, cpu); ++ register_cpu_notifier(&migration_notifier); ++ ++ /* Register cpu active notifiers */ ++ cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); ++ cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); ++ ++ return 0; ++} ++early_initcall(migration_init); ++#endif ++ ++#ifdef CONFIG_SMP ++ ++#ifdef CONFIG_SCHED_DEBUG ++ ++static __read_mostly int sched_domain_debug_enabled; ++ ++static int __init sched_domain_debug_setup(char *str) ++{ ++ sched_domain_debug_enabled = 1; ++ ++ return 0; ++} ++early_param("sched_debug", sched_domain_debug_setup); ++ ++static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, ++ struct cpumask *groupmask) ++{ ++ struct sched_group *group = sd->groups; ++ char str[256]; ++ ++ cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); ++ cpumask_clear(groupmask); ++ ++ printk(KERN_DEBUG "%*s domain %d: ", level, "", level); ++ ++ if (!(sd->flags & SD_LOAD_BALANCE)) { ++ printk("does not load-balance\n"); ++ if (sd->parent) ++ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" ++ " has parent"); ++ return -1; ++ } ++ ++ printk(KERN_CONT "span %s level %s\n", str, sd->name); ++ ++ if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { ++ printk(KERN_ERR "ERROR: domain->span does not contain " ++ "CPU%d\n", cpu); ++ } ++ if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { ++ printk(KERN_ERR "ERROR: domain->groups does not contain" ++ " CPU%d\n", cpu); ++ } ++ ++ printk(KERN_DEBUG "%*s groups:", level + 1, ""); ++ do { ++ if (!group) { ++ printk("\n"); ++ printk(KERN_ERR "ERROR: group is NULL\n"); ++ break; ++ } ++ ++ if (!group->cpu_power) { ++ printk(KERN_CONT "\n"); ++ printk(KERN_ERR "ERROR: domain->cpu_power not " ++ "set\n"); ++ break; ++ } ++ ++ if (!cpumask_weight(sched_group_cpus(group))) { ++ printk(KERN_CONT "\n"); ++ printk(KERN_ERR "ERROR: empty group\n"); ++ break; ++ } ++ ++ if (cpumask_intersects(groupmask, sched_group_cpus(group))) { ++ printk(KERN_CONT "\n"); ++ printk(KERN_ERR "ERROR: repeated CPUs\n"); ++ break; ++ } ++ ++ cpumask_or(groupmask, groupmask, sched_group_cpus(group)); ++ ++ cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); ++ ++ printk(KERN_CONT " %s", str); ++ if (group->cpu_power != SCHED_LOAD_SCALE) { ++ printk(KERN_CONT " (cpu_power = %d)", ++ group->cpu_power); ++ } ++ ++ group = group->next; ++ } while (group != sd->groups); ++ printk(KERN_CONT "\n"); ++ ++ if (!cpumask_equal(sched_domain_span(sd), groupmask)) ++ printk(KERN_ERR "ERROR: groups don't span domain->span\n"); ++ ++ if (sd->parent && ++ !cpumask_subset(groupmask, sched_domain_span(sd->parent))) ++ printk(KERN_ERR "ERROR: parent span is not a superset " ++ "of domain->span\n"); ++ return 0; ++} ++ ++static void sched_domain_debug(struct sched_domain *sd, int cpu) ++{ ++ cpumask_var_t groupmask; ++ int level = 0; ++ ++ if (!sched_domain_debug_enabled) ++ return; ++ ++ if (!sd) { ++ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); ++ return; ++ } ++ ++ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); ++ ++ if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { ++ printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); ++ return; ++ } ++ ++ for (;;) { ++ if (sched_domain_debug_one(sd, cpu, level, groupmask)) ++ break; ++ level++; ++ sd = sd->parent; ++ if (!sd) ++ break; ++ } ++ free_cpumask_var(groupmask); ++} ++#else /* !CONFIG_SCHED_DEBUG */ ++# define sched_domain_debug(sd, cpu) do { } while (0) ++#endif /* CONFIG_SCHED_DEBUG */ ++ ++static int sd_degenerate(struct sched_domain *sd) ++{ ++ if (cpumask_weight(sched_domain_span(sd)) == 1) ++ return 1; ++ ++ /* Following flags need at least 2 groups */ ++ if (sd->flags & (SD_LOAD_BALANCE | ++ SD_BALANCE_NEWIDLE | ++ SD_BALANCE_FORK | ++ SD_BALANCE_EXEC | ++ SD_SHARE_CPUPOWER | ++ SD_SHARE_PKG_RESOURCES)) { ++ if (sd->groups != sd->groups->next) ++ return 0; ++ } ++ ++ /* Following flags don't use groups */ ++ if (sd->flags & (SD_WAKE_AFFINE)) ++ return 0; ++ ++ return 1; ++} ++ ++static int ++sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) ++{ ++ unsigned long cflags = sd->flags, pflags = parent->flags; ++ ++ if (sd_degenerate(parent)) ++ return 1; ++ ++ if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) ++ return 0; ++ ++ /* Flags needing groups don't count if only 1 group in parent */ ++ if (parent->groups == parent->groups->next) { ++ pflags &= ~(SD_LOAD_BALANCE | ++ SD_BALANCE_NEWIDLE | ++ SD_BALANCE_FORK | ++ SD_BALANCE_EXEC | ++ SD_SHARE_CPUPOWER | ++ SD_SHARE_PKG_RESOURCES); ++ if (nr_node_ids == 1) ++ pflags &= ~SD_SERIALIZE; ++ } ++ if (~cflags & pflags) ++ return 0; ++ ++ return 1; ++} ++ ++static void free_rootdomain(struct root_domain *rd) ++{ ++ synchronize_sched(); ++ ++ free_cpumask_var(rd->rto_mask); ++ free_cpumask_var(rd->online); ++ free_cpumask_var(rd->span); ++ kfree(rd); ++} ++ ++static void rq_attach_root(struct rq *rq, struct root_domain *rd) ++{ ++ struct root_domain *old_rd = NULL; ++ unsigned long flags; ++ ++ grq_lock_irqsave(&flags); ++ ++ if (rq->rd) { ++ old_rd = rq->rd; ++ ++ if (cpumask_test_cpu(cpu_of(rq), old_rd->online)) ++ set_rq_offline(rq); ++ ++ cpumask_clear_cpu(cpu_of(rq), old_rd->span); ++ ++ /* ++ * If we dont want to free the old_rt yet then ++ * set old_rd to NULL to skip the freeing later ++ * in this function: ++ */ ++ if (!atomic_dec_and_test(&old_rd->refcount)) ++ old_rd = NULL; ++ } ++ ++ atomic_inc(&rd->refcount); ++ rq->rd = rd; ++ ++ cpumask_set_cpu(cpu_of(rq), rd->span); ++ if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) ++ set_rq_online(rq); ++ ++ grq_unlock_irqrestore(&flags); ++ ++ if (old_rd) ++ free_rootdomain(old_rd); ++} ++ ++static int init_rootdomain(struct root_domain *rd) ++{ ++ memset(rd, 0, sizeof(*rd)); ++ ++ if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) ++ goto out; ++ if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) ++ goto free_span; ++ if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) ++ goto free_online; ++ ++ if (cpupri_init(&rd->cpupri) != 0) ++ goto free_rto_mask; ++ return 0; ++ ++free_rto_mask: ++ free_cpumask_var(rd->rto_mask); ++free_online: ++ free_cpumask_var(rd->online); ++free_span: ++ free_cpumask_var(rd->span); ++out: ++ return -ENOMEM; ++} ++ ++static void init_defrootdomain(void) ++{ ++ init_rootdomain(&def_root_domain); ++ ++ atomic_set(&def_root_domain.refcount, 1); ++} ++ ++static struct root_domain *alloc_rootdomain(void) ++{ ++ struct root_domain *rd; ++ ++ rd = kmalloc(sizeof(*rd), GFP_KERNEL); ++ if (!rd) ++ return NULL; ++ ++ if (init_rootdomain(rd) != 0) { ++ kfree(rd); ++ return NULL; ++ } ++ ++ return rd; ++} ++ ++/* ++ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must ++ * hold the hotplug lock. ++ */ ++static void ++cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) ++{ ++ struct rq *rq = cpu_rq(cpu); ++ struct sched_domain *tmp; ++ ++ for (tmp = sd; tmp; tmp = tmp->parent) ++ tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); ++ ++ /* Remove the sched domains which do not contribute to scheduling. */ ++ for (tmp = sd; tmp; ) { ++ struct sched_domain *parent = tmp->parent; ++ if (!parent) ++ break; ++ ++ if (sd_parent_degenerate(tmp, parent)) { ++ tmp->parent = parent->parent; ++ if (parent->parent) ++ parent->parent->child = tmp; ++ } else ++ tmp = tmp->parent; ++ } ++ ++ if (sd && sd_degenerate(sd)) { ++ sd = sd->parent; ++ if (sd) ++ sd->child = NULL; ++ } ++ ++ sched_domain_debug(sd, cpu); ++ ++ rq_attach_root(rq, rd); ++ rcu_assign_pointer(rq->sd, sd); ++} ++ ++/* cpus with isolated domains */ ++static cpumask_var_t cpu_isolated_map; ++ ++/* Setup the mask of cpus configured for isolated domains */ ++static int __init isolated_cpu_setup(char *str) ++{ ++ alloc_bootmem_cpumask_var(&cpu_isolated_map); ++ cpulist_parse(str, cpu_isolated_map); ++ return 1; ++} ++ ++__setup("isolcpus=", isolated_cpu_setup); ++ ++/* ++ * init_sched_build_groups takes the cpumask we wish to span, and a pointer ++ * to a function which identifies what group(along with sched group) a CPU ++ * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids ++ * (due to the fact that we keep track of groups covered with a struct cpumask). ++ * ++ * init_sched_build_groups will build a circular linked list of the groups ++ * covered by the given span, and will set each group's ->cpumask correctly, ++ * and ->cpu_power to 0. ++ */ ++static void ++init_sched_build_groups(const struct cpumask *span, ++ const struct cpumask *cpu_map, ++ int (*group_fn)(int cpu, const struct cpumask *cpu_map, ++ struct sched_group **sg, ++ struct cpumask *tmpmask), ++ struct cpumask *covered, struct cpumask *tmpmask) ++{ ++ struct sched_group *first = NULL, *last = NULL; ++ int i; ++ ++ cpumask_clear(covered); ++ ++ for_each_cpu(i, span) { ++ struct sched_group *sg; ++ int group = group_fn(i, cpu_map, &sg, tmpmask); ++ int j; ++ ++ if (cpumask_test_cpu(i, covered)) ++ continue; ++ ++ cpumask_clear(sched_group_cpus(sg)); ++ sg->cpu_power = 0; ++ ++ for_each_cpu(j, span) { ++ if (group_fn(j, cpu_map, NULL, tmpmask) != group) ++ continue; ++ ++ cpumask_set_cpu(j, covered); ++ cpumask_set_cpu(j, sched_group_cpus(sg)); ++ } ++ if (!first) ++ first = sg; ++ if (last) ++ last->next = sg; ++ last = sg; ++ } ++ last->next = first; ++} ++ ++#define SD_NODES_PER_DOMAIN 16 ++ ++#ifdef CONFIG_NUMA ++ ++/** ++ * find_next_best_node - find the next node to include in a sched_domain ++ * @node: node whose sched_domain we're building ++ * @used_nodes: nodes already in the sched_domain ++ * ++ * Find the next node to include in a given scheduling domain. Simply ++ * finds the closest node not already in the @used_nodes map. ++ * ++ * Should use nodemask_t. ++ */ ++static int find_next_best_node(int node, nodemask_t *used_nodes) ++{ ++ int i, n, val, min_val, best_node = 0; ++ ++ min_val = INT_MAX; ++ ++ for (i = 0; i < nr_node_ids; i++) { ++ /* Start at @node */ ++ n = (node + i) % nr_node_ids; ++ ++ if (!nr_cpus_node(n)) ++ continue; ++ ++ /* Skip already used nodes */ ++ if (node_isset(n, *used_nodes)) ++ continue; ++ ++ /* Simple min distance search */ ++ val = node_distance(node, n); ++ ++ if (val < min_val) { ++ min_val = val; ++ best_node = n; ++ } ++ } ++ ++ node_set(best_node, *used_nodes); ++ return best_node; ++} ++ ++/** ++ * sched_domain_node_span - get a cpumask for a node's sched_domain ++ * @node: node whose cpumask we're constructing ++ * @span: resulting cpumask ++ * ++ * Given a node, construct a good cpumask for its sched_domain to span. It ++ * should be one that prevents unnecessary balancing, but also spreads tasks ++ * out optimally. ++ */ ++static void sched_domain_node_span(int node, struct cpumask *span) ++{ ++ nodemask_t used_nodes; ++ int i; ++ ++ cpumask_clear(span); ++ nodes_clear(used_nodes); ++ ++ cpumask_or(span, span, cpumask_of_node(node)); ++ node_set(node, used_nodes); ++ ++ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { ++ int next_node = find_next_best_node(node, &used_nodes); ++ ++ cpumask_or(span, span, cpumask_of_node(next_node)); ++ } ++} ++#endif /* CONFIG_NUMA */ ++ ++int sched_smt_power_savings = 0, sched_mc_power_savings = 0; ++ ++/* ++ * The cpus mask in sched_group and sched_domain hangs off the end. ++ * ++ * ( See the the comments in include/linux/sched.h:struct sched_group ++ * and struct sched_domain. ) ++ */ ++struct static_sched_group { ++ struct sched_group sg; ++ DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); ++}; ++ ++struct static_sched_domain { ++ struct sched_domain sd; ++ DECLARE_BITMAP(span, CONFIG_NR_CPUS); ++}; ++ ++struct s_data { ++#ifdef CONFIG_NUMA ++ int sd_allnodes; ++ cpumask_var_t domainspan; ++ cpumask_var_t covered; ++ cpumask_var_t notcovered; ++#endif ++ cpumask_var_t nodemask; ++ cpumask_var_t this_sibling_map; ++ cpumask_var_t this_core_map; ++ cpumask_var_t this_book_map; ++ cpumask_var_t send_covered; ++ cpumask_var_t tmpmask; ++ struct sched_group **sched_group_nodes; ++ struct root_domain *rd; ++}; ++ ++enum s_alloc { ++ sa_sched_groups = 0, ++ sa_rootdomain, ++ sa_tmpmask, ++ sa_send_covered, ++ sa_this_book_map, ++ sa_this_core_map, ++ sa_this_sibling_map, ++ sa_nodemask, ++ sa_sched_group_nodes, ++#ifdef CONFIG_NUMA ++ sa_notcovered, ++ sa_covered, ++ sa_domainspan, ++#endif ++ sa_none, ++}; ++ ++/* ++ * SMT sched-domains: ++ */ ++#ifdef CONFIG_SCHED_SMT ++static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); ++static DEFINE_PER_CPU(struct static_sched_group, sched_groups); ++ ++static int ++cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, ++ struct sched_group **sg, struct cpumask *unused) ++{ ++ if (sg) ++ *sg = &per_cpu(sched_groups, cpu).sg; ++ return cpu; ++} ++#endif /* CONFIG_SCHED_SMT */ ++ ++/* ++ * multi-core sched-domains: ++ */ ++#ifdef CONFIG_SCHED_MC ++static DEFINE_PER_CPU(struct static_sched_domain, core_domains); ++static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); ++ ++static int ++cpu_to_core_group(int cpu, const struct cpumask *cpu_map, ++ struct sched_group **sg, struct cpumask *mask) ++{ ++ int group; ++#ifdef CONFIG_SCHED_SMT ++ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); ++ group = cpumask_first(mask); ++#else ++ group = cpu; ++#endif ++ if (sg) ++ *sg = &per_cpu(sched_group_core, group).sg; ++ return group; ++} ++#endif /* CONFIG_SCHED_MC */ ++ ++/* ++ * book sched-domains: ++ */ ++#ifdef CONFIG_SCHED_BOOK ++static DEFINE_PER_CPU(struct static_sched_domain, book_domains); ++static DEFINE_PER_CPU(struct static_sched_group, sched_group_book); ++ ++static int ++cpu_to_book_group(int cpu, const struct cpumask *cpu_map, ++ struct sched_group **sg, struct cpumask *mask) ++{ ++ int group = cpu; ++#ifdef CONFIG_SCHED_MC ++ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); ++ group = cpumask_first(mask); ++#elif defined(CONFIG_SCHED_SMT) ++ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); ++ group = cpumask_first(mask); ++#endif ++ if (sg) ++ *sg = &per_cpu(sched_group_book, group).sg; ++ return group; ++} ++#endif /* CONFIG_SCHED_BOOK */ ++ ++static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); ++static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); ++ ++static int ++cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, ++ struct sched_group **sg, struct cpumask *mask) ++{ ++ int group; ++#ifdef CONFIG_SCHED_BOOK ++ cpumask_and(mask, cpu_book_mask(cpu), cpu_map); ++ group = cpumask_first(mask); ++#elif defined(CONFIG_SCHED_MC) ++ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); ++ group = cpumask_first(mask); ++#elif defined(CONFIG_SCHED_SMT) ++ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); ++ group = cpumask_first(mask); ++#else ++ group = cpu; ++#endif ++ if (sg) ++ *sg = &per_cpu(sched_group_phys, group).sg; ++ return group; ++} ++ ++/** ++ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. ++ * @group: The group whose first cpu is to be returned. ++ */ ++static inline unsigned int group_first_cpu(struct sched_group *group) ++{ ++ return cpumask_first(sched_group_cpus(group)); ++} ++ ++#ifdef CONFIG_NUMA ++/* ++ * The init_sched_build_groups can't handle what we want to do with node ++ * groups, so roll our own. Now each node has its own list of groups which ++ * gets dynamically allocated. ++ */ ++static DEFINE_PER_CPU(struct static_sched_domain, node_domains); ++static struct sched_group ***sched_group_nodes_bycpu; ++ ++static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); ++static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); ++ ++static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, ++ struct sched_group **sg, ++ struct cpumask *nodemask) ++{ ++ int group; ++ ++ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); ++ group = cpumask_first(nodemask); ++ ++ if (sg) ++ *sg = &per_cpu(sched_group_allnodes, group).sg; ++ return group; ++} ++ ++static void init_numa_sched_groups_power(struct sched_group *group_head) ++{ ++ struct sched_group *sg = group_head; ++ int j; ++ ++ if (!sg) ++ return; ++ do { ++ for_each_cpu(j, sched_group_cpus(sg)) { ++ struct sched_domain *sd; ++ ++ sd = &per_cpu(phys_domains, j).sd; ++ if (j != group_first_cpu(sd->groups)) { ++ /* ++ * Only add "power" once for each ++ * physical package. ++ */ ++ continue; ++ } ++ ++ sg->cpu_power += sd->groups->cpu_power; ++ } ++ sg = sg->next; ++ } while (sg != group_head); ++} ++ ++static int build_numa_sched_groups(struct s_data *d, ++ const struct cpumask *cpu_map, int num) ++{ ++ struct sched_domain *sd; ++ struct sched_group *sg, *prev; ++ int n, j; ++ ++ cpumask_clear(d->covered); ++ cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); ++ if (cpumask_empty(d->nodemask)) { ++ d->sched_group_nodes[num] = NULL; ++ goto out; ++ } ++ ++ sched_domain_node_span(num, d->domainspan); ++ cpumask_and(d->domainspan, d->domainspan, cpu_map); ++ ++ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), ++ GFP_KERNEL, num); ++ if (!sg) { ++ printk(KERN_WARNING "Can not alloc domain group for node %d\n", ++ num); ++ return -ENOMEM; ++ } ++ d->sched_group_nodes[num] = sg; ++ ++ for_each_cpu(j, d->nodemask) { ++ sd = &per_cpu(node_domains, j).sd; ++ sd->groups = sg; ++ } ++ ++ sg->cpu_power = 0; ++ cpumask_copy(sched_group_cpus(sg), d->nodemask); ++ sg->next = sg; ++ cpumask_or(d->covered, d->covered, d->nodemask); ++ ++ prev = sg; ++ for (j = 0; j < nr_node_ids; j++) { ++ n = (num + j) % nr_node_ids; ++ cpumask_complement(d->notcovered, d->covered); ++ cpumask_and(d->tmpmask, d->notcovered, cpu_map); ++ cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); ++ if (cpumask_empty(d->tmpmask)) ++ break; ++ cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); ++ if (cpumask_empty(d->tmpmask)) ++ continue; ++ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), ++ GFP_KERNEL, num); ++ if (!sg) { ++ printk(KERN_WARNING ++ "Can not alloc domain group for node %d\n", j); ++ return -ENOMEM; ++ } ++ sg->cpu_power = 0; ++ cpumask_copy(sched_group_cpus(sg), d->tmpmask); ++ sg->next = prev->next; ++ cpumask_or(d->covered, d->covered, d->tmpmask); ++ prev->next = sg; ++ prev = sg; ++ } ++out: ++ return 0; ++} ++#endif /* CONFIG_NUMA */ ++ ++#ifdef CONFIG_NUMA ++/* Free memory allocated for various sched_group structures */ ++static void free_sched_groups(const struct cpumask *cpu_map, ++ struct cpumask *nodemask) ++{ ++ int cpu, i; ++ ++ for_each_cpu(cpu, cpu_map) { ++ struct sched_group **sched_group_nodes ++ = sched_group_nodes_bycpu[cpu]; ++ ++ if (!sched_group_nodes) ++ continue; ++ ++ for (i = 0; i < nr_node_ids; i++) { ++ struct sched_group *oldsg, *sg = sched_group_nodes[i]; ++ ++ cpumask_and(nodemask, cpumask_of_node(i), cpu_map); ++ if (cpumask_empty(nodemask)) ++ continue; ++ ++ if (sg == NULL) ++ continue; ++ sg = sg->next; ++next_sg: ++ oldsg = sg; ++ sg = sg->next; ++ kfree(oldsg); ++ if (oldsg != sched_group_nodes[i]) ++ goto next_sg; ++ } ++ kfree(sched_group_nodes); ++ sched_group_nodes_bycpu[cpu] = NULL; ++ } ++} ++#else /* !CONFIG_NUMA */ ++static void free_sched_groups(const struct cpumask *cpu_map, ++ struct cpumask *nodemask) ++{ ++} ++#endif /* CONFIG_NUMA */ ++ ++/* ++ * Initialise sched groups cpu_power. ++ * ++ * cpu_power indicates the capacity of sched group, which is used while ++ * distributing the load between different sched groups in a sched domain. ++ * Typically cpu_power for all the groups in a sched domain will be same unless ++ * there are asymmetries in the topology. If there are asymmetries, group ++ * having more cpu_power will pickup more load compared to the group having ++ * less cpu_power. ++ * ++ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents ++ * the maximum number of tasks a group can handle in the presence of other idle ++ * or lightly loaded groups in the same sched domain. ++ */ ++static void init_sched_groups_power(int cpu, struct sched_domain *sd) ++{ ++ struct sched_domain *child; ++ struct sched_group *group; ++ long power; ++ int weight; ++ ++ WARN_ON(!sd || !sd->groups); ++ ++ if (cpu != group_first_cpu(sd->groups)) ++ return; ++ ++ sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups)); ++ ++ child = sd->child; ++ ++ sd->groups->cpu_power = 0; ++ ++ if (!child) { ++ power = SCHED_LOAD_SCALE; ++ weight = cpumask_weight(sched_domain_span(sd)); ++ /* ++ * SMT siblings share the power of a single core. ++ * Usually multiple threads get a better yield out of ++ * that one core than a single thread would have, ++ * reflect that in sd->smt_gain. ++ */ ++ if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { ++ power *= sd->smt_gain; ++ power /= weight; ++ power >>= SCHED_LOAD_SHIFT; ++ } ++ sd->groups->cpu_power += power; ++ return; ++ } ++ ++ /* ++ * Add cpu_power of each child group to this groups cpu_power ++ */ ++ group = child->groups; ++ do { ++ sd->groups->cpu_power += group->cpu_power; ++ group = group->next; ++ } while (group != child->groups); ++} ++ ++/* ++ * Initialisers for schedule domains ++ * Non-inlined to reduce accumulated stack pressure in build_sched_domains() ++ */ ++ ++#ifdef CONFIG_SCHED_DEBUG ++# define SD_INIT_NAME(sd, type) sd->name = #type ++#else ++# define SD_INIT_NAME(sd, type) do { } while (0) ++#endif ++ ++#define SD_INIT(sd, type) sd_init_##type(sd) ++ ++#define SD_INIT_FUNC(type) \ ++static noinline void sd_init_##type(struct sched_domain *sd) \ ++{ \ ++ memset(sd, 0, sizeof(*sd)); \ ++ *sd = SD_##type##_INIT; \ ++ sd->level = SD_LV_##type; \ ++ SD_INIT_NAME(sd, type); \ ++} ++ ++SD_INIT_FUNC(CPU) ++#ifdef CONFIG_NUMA ++ SD_INIT_FUNC(ALLNODES) ++ SD_INIT_FUNC(NODE) ++#endif ++#ifdef CONFIG_SCHED_SMT ++ SD_INIT_FUNC(SIBLING) ++#endif ++#ifdef CONFIG_SCHED_MC ++ SD_INIT_FUNC(MC) ++#endif ++#ifdef CONFIG_SCHED_BOOK ++ SD_INIT_FUNC(BOOK) ++#endif ++ ++static int default_relax_domain_level = -1; ++ ++static int __init setup_relax_domain_level(char *str) ++{ ++ unsigned long val; ++ ++ val = simple_strtoul(str, NULL, 0); ++ if (val < SD_LV_MAX) ++ default_relax_domain_level = val; ++ ++ return 1; ++} ++__setup("relax_domain_level=", setup_relax_domain_level); ++ ++static void set_domain_attribute(struct sched_domain *sd, ++ struct sched_domain_attr *attr) ++{ ++ int request; ++ ++ if (!attr || attr->relax_domain_level < 0) { ++ if (default_relax_domain_level < 0) ++ return; ++ else ++ request = default_relax_domain_level; ++ } else ++ request = attr->relax_domain_level; ++ if (request < sd->level) { ++ /* turn off idle balance on this domain */ ++ sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); ++ } else { ++ /* turn on idle balance on this domain */ ++ sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); ++ } ++} ++ ++static void __free_domain_allocs(struct s_data *d, enum s_alloc what, ++ const struct cpumask *cpu_map) ++{ ++ switch (what) { ++ case sa_sched_groups: ++ free_sched_groups(cpu_map, d->tmpmask); /* fall through */ ++ d->sched_group_nodes = NULL; ++ case sa_rootdomain: ++ free_rootdomain(d->rd); /* fall through */ ++ case sa_tmpmask: ++ free_cpumask_var(d->tmpmask); /* fall through */ ++ case sa_send_covered: ++ free_cpumask_var(d->send_covered); /* fall through */ ++ case sa_this_book_map: ++ free_cpumask_var(d->this_book_map); /* fall through */ ++ case sa_this_core_map: ++ free_cpumask_var(d->this_core_map); /* fall through */ ++ case sa_this_sibling_map: ++ free_cpumask_var(d->this_sibling_map); /* fall through */ ++ case sa_nodemask: ++ free_cpumask_var(d->nodemask); /* fall through */ ++ case sa_sched_group_nodes: ++#ifdef CONFIG_NUMA ++ kfree(d->sched_group_nodes); /* fall through */ ++ case sa_notcovered: ++ free_cpumask_var(d->notcovered); /* fall through */ ++ case sa_covered: ++ free_cpumask_var(d->covered); /* fall through */ ++ case sa_domainspan: ++ free_cpumask_var(d->domainspan); /* fall through */ ++#endif ++ case sa_none: ++ break; ++ } ++} ++ ++static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, ++ const struct cpumask *cpu_map) ++{ ++#ifdef CONFIG_NUMA ++ if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) ++ return sa_none; ++ if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) ++ return sa_domainspan; ++ if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) ++ return sa_covered; ++ /* Allocate the per-node list of sched groups */ ++ d->sched_group_nodes = kcalloc(nr_node_ids, ++ sizeof(struct sched_group *), GFP_KERNEL); ++ if (!d->sched_group_nodes) { ++ printk(KERN_WARNING "Can not alloc sched group node list\n"); ++ return sa_notcovered; ++ } ++ sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; ++#endif ++ if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) ++ return sa_sched_group_nodes; ++ if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) ++ return sa_nodemask; ++ if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) ++ return sa_this_sibling_map; ++ if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL)) ++ return sa_this_core_map; ++ if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) ++ return sa_this_book_map; ++ if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) ++ return sa_send_covered; ++ d->rd = alloc_rootdomain(); ++ if (!d->rd) { ++ printk(KERN_WARNING "Cannot alloc root domain\n"); ++ return sa_tmpmask; ++ } ++ return sa_rootdomain; ++} ++ ++static struct sched_domain *__build_numa_sched_domains(struct s_data *d, ++ const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) ++{ ++ struct sched_domain *sd = NULL; ++#ifdef CONFIG_NUMA ++ struct sched_domain *parent; ++ ++ d->sd_allnodes = 0; ++ if (cpumask_weight(cpu_map) > ++ SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { ++ sd = &per_cpu(allnodes_domains, i).sd; ++ SD_INIT(sd, ALLNODES); ++ set_domain_attribute(sd, attr); ++ cpumask_copy(sched_domain_span(sd), cpu_map); ++ cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); ++ d->sd_allnodes = 1; ++ } ++ parent = sd; ++ ++ sd = &per_cpu(node_domains, i).sd; ++ SD_INIT(sd, NODE); ++ set_domain_attribute(sd, attr); ++ sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); ++ sd->parent = parent; ++ if (parent) ++ parent->child = sd; ++ cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); ++#endif ++ return sd; ++} ++ ++static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, ++ const struct cpumask *cpu_map, struct sched_domain_attr *attr, ++ struct sched_domain *parent, int i) ++{ ++ struct sched_domain *sd; ++ sd = &per_cpu(phys_domains, i).sd; ++ SD_INIT(sd, CPU); ++ set_domain_attribute(sd, attr); ++ cpumask_copy(sched_domain_span(sd), d->nodemask); ++ sd->parent = parent; ++ if (parent) ++ parent->child = sd; ++ cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); ++ return sd; ++} ++ ++static struct sched_domain *__build_book_sched_domain(struct s_data *d, ++ const struct cpumask *cpu_map, struct sched_domain_attr *attr, ++ struct sched_domain *parent, int i) ++{ ++ struct sched_domain *sd = parent; ++#ifdef CONFIG_SCHED_BOOK ++ sd = &per_cpu(book_domains, i).sd; ++ SD_INIT(sd, BOOK); ++ set_domain_attribute(sd, attr); ++ cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i)); ++ sd->parent = parent; ++ parent->child = sd; ++ cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask); ++#endif ++ return sd; ++} ++ ++static struct sched_domain *__build_mc_sched_domain(struct s_data *d, ++ const struct cpumask *cpu_map, struct sched_domain_attr *attr, ++ struct sched_domain *parent, int i) ++{ ++ struct sched_domain *sd = parent; ++#ifdef CONFIG_SCHED_MC ++ sd = &per_cpu(core_domains, i).sd; ++ SD_INIT(sd, MC); ++ set_domain_attribute(sd, attr); ++ cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); ++ sd->parent = parent; ++ parent->child = sd; ++ cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); ++#endif ++ return sd; ++} ++ ++static struct sched_domain *__build_smt_sched_domain(struct s_data *d, ++ const struct cpumask *cpu_map, struct sched_domain_attr *attr, ++ struct sched_domain *parent, int i) ++{ ++ struct sched_domain *sd = parent; ++#ifdef CONFIG_SCHED_SMT ++ sd = &per_cpu(cpu_domains, i).sd; ++ SD_INIT(sd, SIBLING); ++ set_domain_attribute(sd, attr); ++ cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); ++ sd->parent = parent; ++ parent->child = sd; ++ cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); ++#endif ++ return sd; ++} ++ ++static void build_sched_groups(struct s_data *d, enum sched_domain_level l, ++ const struct cpumask *cpu_map, int cpu) ++{ ++ switch (l) { ++#ifdef CONFIG_SCHED_SMT ++ case SD_LV_SIBLING: /* set up CPU (sibling) groups */ ++ cpumask_and(d->this_sibling_map, cpu_map, ++ topology_thread_cpumask(cpu)); ++ if (cpu == cpumask_first(d->this_sibling_map)) ++ init_sched_build_groups(d->this_sibling_map, cpu_map, ++ &cpu_to_cpu_group, ++ d->send_covered, d->tmpmask); ++ break; ++#endif ++#ifdef CONFIG_SCHED_MC ++ case SD_LV_MC: /* set up multi-core groups */ ++ cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); ++ if (cpu == cpumask_first(d->this_core_map)) ++ init_sched_build_groups(d->this_core_map, cpu_map, ++ &cpu_to_core_group, ++ d->send_covered, d->tmpmask); ++ break; ++#endif ++#ifdef CONFIG_SCHED_BOOK ++ case SD_LV_BOOK: /* set up book groups */ ++ cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu)); ++ if (cpu == cpumask_first(d->this_book_map)) ++ init_sched_build_groups(d->this_book_map, cpu_map, ++ &cpu_to_book_group, ++ d->send_covered, d->tmpmask); ++ break; ++#endif ++ case SD_LV_CPU: /* set up physical groups */ ++ cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); ++ if (!cpumask_empty(d->nodemask)) ++ init_sched_build_groups(d->nodemask, cpu_map, ++ &cpu_to_phys_group, ++ d->send_covered, d->tmpmask); ++ break; ++#ifdef CONFIG_NUMA ++ case SD_LV_ALLNODES: ++ init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, ++ d->send_covered, d->tmpmask); ++ break; ++#endif ++ default: ++ break; ++ } ++} ++ ++/* ++ * Build sched domains for a given set of cpus and attach the sched domains ++ * to the individual cpus ++ */ ++static int __build_sched_domains(const struct cpumask *cpu_map, ++ struct sched_domain_attr *attr) ++{ ++ enum s_alloc alloc_state = sa_none; ++ struct s_data d; ++ struct sched_domain *sd; ++ int i; ++#ifdef CONFIG_NUMA ++ d.sd_allnodes = 0; ++#endif ++ ++ alloc_state = __visit_domain_allocation_hell(&d, cpu_map); ++ if (alloc_state != sa_rootdomain) ++ goto error; ++ alloc_state = sa_sched_groups; ++ ++ /* ++ * Set up domains for cpus specified by the cpu_map. ++ */ ++ for_each_cpu(i, cpu_map) { ++ cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), ++ cpu_map); ++ ++ sd = __build_numa_sched_domains(&d, cpu_map, attr, i); ++ sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); ++ sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i); ++ sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); ++ sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); ++ } ++ ++ for_each_cpu(i, cpu_map) { ++ build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); ++ build_sched_groups(&d, SD_LV_BOOK, cpu_map, i); ++ build_sched_groups(&d, SD_LV_MC, cpu_map, i); ++ } ++ ++ /* Set up physical groups */ ++ for (i = 0; i < nr_node_ids; i++) ++ build_sched_groups(&d, SD_LV_CPU, cpu_map, i); ++ ++#ifdef CONFIG_NUMA ++ /* Set up node groups */ ++ if (d.sd_allnodes) ++ build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); ++ ++ for (i = 0; i < nr_node_ids; i++) ++ if (build_numa_sched_groups(&d, cpu_map, i)) ++ goto error; ++#endif ++ ++ /* Calculate CPU power for physical packages and nodes */ ++#ifdef CONFIG_SCHED_SMT ++ for_each_cpu(i, cpu_map) { ++ sd = &per_cpu(cpu_domains, i).sd; ++ init_sched_groups_power(i, sd); ++ } ++#endif ++#ifdef CONFIG_SCHED_MC ++ for_each_cpu(i, cpu_map) { ++ sd = &per_cpu(core_domains, i).sd; ++ init_sched_groups_power(i, sd); ++ } ++#endif ++#ifdef CONFIG_SCHED_BOOK ++ for_each_cpu(i, cpu_map) { ++ sd = &per_cpu(book_domains, i).sd; ++ init_sched_groups_power(i, sd); ++ } ++#endif ++ ++ for_each_cpu(i, cpu_map) { ++ sd = &per_cpu(phys_domains, i).sd; ++ init_sched_groups_power(i, sd); ++ } ++ ++#ifdef CONFIG_NUMA ++ for (i = 0; i < nr_node_ids; i++) ++ init_numa_sched_groups_power(d.sched_group_nodes[i]); ++ ++ if (d.sd_allnodes) { ++ struct sched_group *sg; ++ ++ cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, ++ d.tmpmask); ++ init_numa_sched_groups_power(sg); ++ } ++#endif ++ ++ /* Attach the domains */ ++ for_each_cpu(i, cpu_map) { ++#ifdef CONFIG_SCHED_SMT ++ sd = &per_cpu(cpu_domains, i).sd; ++#elif defined(CONFIG_SCHED_MC) ++ sd = &per_cpu(core_domains, i).sd; ++#elif defined(CONFIG_SCHED_BOOK) ++ sd = &per_cpu(book_domains, i).sd; ++#else ++ sd = &per_cpu(phys_domains, i).sd; ++#endif ++ cpu_attach_domain(sd, d.rd, i); ++ } ++ ++ d.sched_group_nodes = NULL; /* don't free this we still need it */ ++ __free_domain_allocs(&d, sa_tmpmask, cpu_map); ++ return 0; ++ ++error: ++ __free_domain_allocs(&d, alloc_state, cpu_map); ++ return -ENOMEM; ++} ++ ++static int build_sched_domains(const struct cpumask *cpu_map) ++{ ++ return __build_sched_domains(cpu_map, NULL); ++} ++ ++static cpumask_var_t *doms_cur; /* current sched domains */ ++static int ndoms_cur; /* number of sched domains in 'doms_cur' */ ++static struct sched_domain_attr *dattr_cur; ++ /* attribues of custom domains in 'doms_cur' */ ++ ++/* ++ * Special case: If a kmalloc of a doms_cur partition (array of ++ * cpumask) fails, then fallback to a single sched domain, ++ * as determined by the single cpumask fallback_doms. ++ */ ++static cpumask_var_t fallback_doms; ++ ++/* ++ * arch_update_cpu_topology lets virtualised architectures update the ++ * cpu core maps. It is supposed to return 1 if the topology changed ++ * or 0 if it stayed the same. ++ */ ++int __attribute__((weak)) arch_update_cpu_topology(void) ++{ ++ return 0; ++} ++ ++cpumask_var_t *alloc_sched_domains(unsigned int ndoms) ++{ ++ int i; ++ cpumask_var_t *doms; ++ ++ doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); ++ if (!doms) ++ return NULL; ++ for (i = 0; i < ndoms; i++) { ++ if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { ++ free_sched_domains(doms, i); ++ return NULL; ++ } ++ } ++ return doms; ++} ++ ++void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) ++{ ++ unsigned int i; ++ for (i = 0; i < ndoms; i++) ++ free_cpumask_var(doms[i]); ++ kfree(doms); ++} ++ ++/* ++ * Set up scheduler domains and groups. Callers must hold the hotplug lock. ++ * For now this just excludes isolated cpus, but could be used to ++ * exclude other special cases in the future. ++ */ ++static int arch_init_sched_domains(const struct cpumask *cpu_map) ++{ ++ int err; ++ ++ arch_update_cpu_topology(); ++ ndoms_cur = 1; ++ doms_cur = alloc_sched_domains(ndoms_cur); ++ if (!doms_cur) ++ doms_cur = &fallback_doms; ++ cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); ++ dattr_cur = NULL; ++ err = build_sched_domains(doms_cur[0]); ++ register_sched_domain_sysctl(); ++ ++ return err; ++} ++ ++static void arch_destroy_sched_domains(const struct cpumask *cpu_map, ++ struct cpumask *tmpmask) ++{ ++ free_sched_groups(cpu_map, tmpmask); ++} ++ ++/* ++ * Detach sched domains from a group of cpus specified in cpu_map ++ * These cpus will now be attached to the NULL domain ++ */ ++static void detach_destroy_domains(const struct cpumask *cpu_map) ++{ ++ /* Save because hotplug lock held. */ ++ static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); ++ int i; ++ ++ for_each_cpu(i, cpu_map) ++ cpu_attach_domain(NULL, &def_root_domain, i); ++ synchronize_sched(); ++ arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); ++} ++ ++/* handle null as "default" */ ++static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, ++ struct sched_domain_attr *new, int idx_new) ++{ ++ struct sched_domain_attr tmp; ++ ++ /* fast path */ ++ if (!new && !cur) ++ return 1; ++ ++ tmp = SD_ATTR_INIT; ++ return !memcmp(cur ? (cur + idx_cur) : &tmp, ++ new ? (new + idx_new) : &tmp, ++ sizeof(struct sched_domain_attr)); ++} ++ ++/* ++ * Partition sched domains as specified by the 'ndoms_new' ++ * cpumasks in the array doms_new[] of cpumasks. This compares ++ * doms_new[] to the current sched domain partitioning, doms_cur[]. ++ * It destroys each deleted domain and builds each new domain. ++ * ++ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. ++ * The masks don't intersect (don't overlap.) We should setup one ++ * sched domain for each mask. CPUs not in any of the cpumasks will ++ * not be load balanced. If the same cpumask appears both in the ++ * current 'doms_cur' domains and in the new 'doms_new', we can leave ++ * it as it is. ++ * ++ * The passed in 'doms_new' should be allocated using ++ * alloc_sched_domains. This routine takes ownership of it and will ++ * free_sched_domains it when done with it. If the caller failed the ++ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, ++ * and partition_sched_domains() will fallback to the single partition ++ * 'fallback_doms', it also forces the domains to be rebuilt. ++ * ++ * If doms_new == NULL it will be replaced with cpu_online_mask. ++ * ndoms_new == 0 is a special case for destroying existing domains, ++ * and it will not create the default domain. ++ * ++ * Call with hotplug lock held ++ */ ++void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], ++ struct sched_domain_attr *dattr_new) ++{ ++ int i, j, n; ++ int new_topology; ++ ++ mutex_lock(&sched_domains_mutex); ++ ++ /* always unregister in case we don't destroy any domains */ ++ unregister_sched_domain_sysctl(); ++ ++ /* Let architecture update cpu core mappings. */ ++ new_topology = arch_update_cpu_topology(); ++ ++ n = doms_new ? ndoms_new : 0; ++ ++ /* Destroy deleted domains */ ++ for (i = 0; i < ndoms_cur; i++) { ++ for (j = 0; j < n && !new_topology; j++) { ++ if (cpumask_equal(doms_cur[i], doms_new[j]) ++ && dattrs_equal(dattr_cur, i, dattr_new, j)) ++ goto match1; ++ } ++ /* no match - a current sched domain not in new doms_new[] */ ++ detach_destroy_domains(doms_cur[i]); ++match1: ++ ; ++ } ++ ++ if (doms_new == NULL) { ++ ndoms_cur = 0; ++ doms_new = &fallback_doms; ++ cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); ++ WARN_ON_ONCE(dattr_new); ++ } ++ ++ /* Build new domains */ ++ for (i = 0; i < ndoms_new; i++) { ++ for (j = 0; j < ndoms_cur && !new_topology; j++) { ++ if (cpumask_equal(doms_new[i], doms_cur[j]) ++ && dattrs_equal(dattr_new, i, dattr_cur, j)) ++ goto match2; ++ } ++ /* no match - add a new doms_new */ ++ __build_sched_domains(doms_new[i], ++ dattr_new ? dattr_new + i : NULL); ++match2: ++ ; ++ } ++ ++ /* Remember the new sched domains */ ++ if (doms_cur != &fallback_doms) ++ free_sched_domains(doms_cur, ndoms_cur); ++ kfree(dattr_cur); /* kfree(NULL) is safe */ ++ doms_cur = doms_new; ++ dattr_cur = dattr_new; ++ ndoms_cur = ndoms_new; ++ ++ register_sched_domain_sysctl(); ++ ++ mutex_unlock(&sched_domains_mutex); ++} ++ ++#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) ++static void arch_reinit_sched_domains(void) ++{ ++ get_online_cpus(); ++ ++ /* Destroy domains first to force the rebuild */ ++ partition_sched_domains(0, NULL, NULL); ++ ++ rebuild_sched_domains(); ++ put_online_cpus(); ++} ++ ++static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) ++{ ++ unsigned int level = 0; ++ ++ if (sscanf(buf, "%u", &level) != 1) ++ return -EINVAL; ++ ++ /* ++ * level is always be positive so don't check for ++ * level < POWERSAVINGS_BALANCE_NONE which is 0 ++ * What happens on 0 or 1 byte write, ++ * need to check for count as well? ++ */ ++ ++ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) ++ return -EINVAL; ++ ++ if (smt) ++ sched_smt_power_savings = level; ++ else ++ sched_mc_power_savings = level; ++ ++ arch_reinit_sched_domains(); ++ ++ return count; ++} ++ ++#ifdef CONFIG_SCHED_MC ++static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, ++ struct sysdev_class_attribute *attr, ++ char *page) ++{ ++ return sprintf(page, "%u\n", sched_mc_power_savings); ++} ++static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, ++ struct sysdev_class_attribute *attr, ++ const char *buf, size_t count) ++{ ++ return sched_power_savings_store(buf, count, 0); ++} ++static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, ++ sched_mc_power_savings_show, ++ sched_mc_power_savings_store); ++#endif ++ ++#ifdef CONFIG_SCHED_SMT ++static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, ++ struct sysdev_class_attribute *attr, ++ char *page) ++{ ++ return sprintf(page, "%u\n", sched_smt_power_savings); ++} ++static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, ++ struct sysdev_class_attribute *attr, ++ const char *buf, size_t count) ++{ ++ return sched_power_savings_store(buf, count, 1); ++} ++static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, ++ sched_smt_power_savings_show, ++ sched_smt_power_savings_store); ++#endif ++ ++int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) ++{ ++ int err = 0; ++ ++#ifdef CONFIG_SCHED_SMT ++ if (smt_capable()) ++ err = sysfs_create_file(&cls->kset.kobj, ++ &attr_sched_smt_power_savings.attr); ++#endif ++#ifdef CONFIG_SCHED_MC ++ if (!err && mc_capable()) ++ err = sysfs_create_file(&cls->kset.kobj, ++ &attr_sched_mc_power_savings.attr); ++#endif ++ return err; ++} ++#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ ++ ++/* ++ * Update cpusets according to cpu_active mask. If cpusets are ++ * disabled, cpuset_update_active_cpus() becomes a simple wrapper ++ * around partition_sched_domains(). ++ */ ++static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, ++ void *hcpu) ++{ ++ switch (action & ~CPU_TASKS_FROZEN) { ++ case CPU_ONLINE: ++ case CPU_DOWN_FAILED: ++ cpuset_update_active_cpus(); ++ return NOTIFY_OK; ++ default: ++ return NOTIFY_DONE; ++ } ++} ++ ++static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, ++ void *hcpu) ++{ ++ switch (action & ~CPU_TASKS_FROZEN) { ++ case CPU_DOWN_PREPARE: ++ cpuset_update_active_cpus(); ++ return NOTIFY_OK; ++ default: ++ return NOTIFY_DONE; ++ } ++} ++ ++static int update_runtime(struct notifier_block *nfb, ++ unsigned long action, void *hcpu) ++{ ++ switch (action) { ++ case CPU_DOWN_PREPARE: ++ case CPU_DOWN_PREPARE_FROZEN: ++ return NOTIFY_OK; ++ ++ case CPU_DOWN_FAILED: ++ case CPU_DOWN_FAILED_FROZEN: ++ case CPU_ONLINE: ++ case CPU_ONLINE_FROZEN: ++ return NOTIFY_OK; ++ ++ default: ++ return NOTIFY_DONE; ++ } ++} ++ ++#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) ++/* ++ * Cheaper version of the below functions in case support for SMT and MC is ++ * compiled in but CPUs have no siblings. ++ */ ++static int sole_cpu_idle(unsigned long cpu) ++{ ++ return rq_idle(cpu_rq(cpu)); ++} ++#endif ++#ifdef CONFIG_SCHED_SMT ++/* All this CPU's SMT siblings are idle */ ++static int siblings_cpu_idle(unsigned long cpu) ++{ ++ return cpumask_subset(&(cpu_rq(cpu)->smt_siblings), ++ &grq.cpu_idle_map); ++} ++#endif ++#ifdef CONFIG_SCHED_MC ++/* All this CPU's shared cache siblings are idle */ ++static int cache_cpu_idle(unsigned long cpu) ++{ ++ return cpumask_subset(&(cpu_rq(cpu)->cache_siblings), ++ &grq.cpu_idle_map); ++} ++#endif ++ ++void __init sched_init_smp(void) ++{ ++ struct sched_domain *sd; ++ int cpu, cpus; ++ ++ cpumask_var_t non_isolated_cpus; ++ ++ alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); ++ alloc_cpumask_var(&fallback_doms, GFP_KERNEL); ++ ++#if defined(CONFIG_NUMA) ++ sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), ++ GFP_KERNEL); ++ BUG_ON(sched_group_nodes_bycpu == NULL); ++#endif ++ get_online_cpus(); ++ mutex_lock(&sched_domains_mutex); ++ arch_init_sched_domains(cpu_active_mask); ++ cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); ++ if (cpumask_empty(non_isolated_cpus)) ++ cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); ++ mutex_unlock(&sched_domains_mutex); ++ put_online_cpus(); ++ ++ hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); ++ hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); ++ ++ /* RT runtime code needs to handle some hotplug events */ ++ hotcpu_notifier(update_runtime, 0); ++ ++ /* Move init over to a non-isolated CPU */ ++ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) ++ BUG(); ++ free_cpumask_var(non_isolated_cpus); ++ ++ /* ++ * Assume that every added cpu gives us slightly less overall latency ++ * allowing us to increase the base rr_interval, non-linearly and with ++ * an upper bound. ++ */ ++ cpus = num_online_cpus(); ++ rr_interval = rr_interval * (4 * cpus + 4) / (cpus + 6); ++ ++ grq_lock_irq(); ++ /* ++ * Set up the relative cache distance of each online cpu from each ++ * other in a simple array for quick lookup. Locality is determined ++ * by the closest sched_domain that CPUs are separated by. CPUs with ++ * shared cache in SMT and MC are treated as local. Separate CPUs ++ * (within the same package or physically) within the same node are ++ * treated as not local. CPUs not even in the same domain (different ++ * nodes) are treated as very distant. ++ */ ++ for_each_online_cpu(cpu) { ++ struct rq *rq = cpu_rq(cpu); ++ for_each_domain(cpu, sd) { ++ unsigned long locality; ++ int other_cpu; ++ ++#ifdef CONFIG_SCHED_SMT ++ if (sd->level == SD_LV_SIBLING) { ++ for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) ++ cpumask_set_cpu(other_cpu, &rq->smt_siblings); ++ } ++#endif ++#ifdef CONFIG_SCHED_MC ++ if (sd->level == SD_LV_MC) { ++ for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) ++ cpumask_set_cpu(other_cpu, &rq->cache_siblings); ++ } ++#endif ++ if (sd->level <= SD_LV_SIBLING) ++ locality = 1; ++ else if (sd->level <= SD_LV_MC) ++ locality = 2; ++ else if (sd->level <= SD_LV_NODE) ++ locality = 3; ++ else ++ continue; ++ ++ for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) { ++ if (locality < rq->cpu_locality[other_cpu]) ++ rq->cpu_locality[other_cpu] = locality; ++ } ++ } ++ ++/* ++ * Each runqueue has its own function in case it doesn't have ++ * siblings of its own allowing mixed topologies. ++ */ ++#ifdef CONFIG_SCHED_SMT ++ if (cpus_weight(rq->smt_siblings) > 1) ++ rq->siblings_idle = siblings_cpu_idle; ++#endif ++#ifdef CONFIG_SCHED_MC ++ if (cpus_weight(rq->cache_siblings) > 1) ++ rq->cache_idle = cache_cpu_idle; ++#endif ++ } ++ grq_unlock_irq(); ++} ++#else ++void __init sched_init_smp(void) ++{ ++} ++#endif /* CONFIG_SMP */ ++ ++unsigned int sysctl_timer_migration = 1; ++ ++int in_sched_functions(unsigned long addr) ++{ ++ return in_lock_functions(addr) || ++ (addr >= (unsigned long)__sched_text_start ++ && addr < (unsigned long)__sched_text_end); ++} ++ ++void __init sched_init(void) ++{ ++ int i; ++ struct rq *rq; ++ ++ prio_ratios[0] = 128; ++ for (i = 1 ; i < PRIO_RANGE ; i++) ++ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10; ++ ++ raw_spin_lock_init(&grq.lock); ++ grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0; ++ grq.niffies = 0; ++ grq.last_jiffy = jiffies; ++ raw_spin_lock_init(&grq.iso_lock); ++ grq.iso_ticks = grq.iso_refractory = 0; ++#ifdef CONFIG_SMP ++ init_defrootdomain(); ++ grq.qnr = grq.idle_cpus = 0; ++ cpumask_clear(&grq.cpu_idle_map); ++#else ++ uprq = &per_cpu(runqueues, 0); ++#endif ++ for_each_possible_cpu(i) { ++ rq = cpu_rq(i); ++ rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc = ++ rq->iowait_pc = rq->idle_pc = 0; ++ rq->dither = 0; ++#ifdef CONFIG_SMP ++ rq->last_niffy = 0; ++ rq->sd = NULL; ++ rq->rd = NULL; ++ rq->online = 0; ++ rq->cpu = i; ++ rq_attach_root(rq, &def_root_domain); ++#endif ++ atomic_set(&rq->nr_iowait, 0); ++ } ++ ++#ifdef CONFIG_SMP ++ nr_cpu_ids = i; ++ /* ++ * Set the base locality for cpu cache distance calculation to ++ * "distant" (3). Make sure the distance from a CPU to itself is 0. ++ */ ++ for_each_possible_cpu(i) { ++ int j; ++ ++ rq = cpu_rq(i); ++#ifdef CONFIG_SCHED_SMT ++ cpumask_clear(&rq->smt_siblings); ++ cpumask_set_cpu(i, &rq->smt_siblings); ++ rq->siblings_idle = sole_cpu_idle; ++ cpumask_set_cpu(i, &rq->smt_siblings); ++#endif ++#ifdef CONFIG_SCHED_MC ++ cpumask_clear(&rq->cache_siblings); ++ cpumask_set_cpu(i, &rq->cache_siblings); ++ rq->cache_idle = sole_cpu_idle; ++ cpumask_set_cpu(i, &rq->cache_siblings); ++#endif ++ rq->cpu_locality = kmalloc(nr_cpu_ids * sizeof(unsigned long), ++ GFP_NOWAIT); ++ for_each_possible_cpu(j) { ++ if (i == j) ++ rq->cpu_locality[j] = 0; ++ else ++ rq->cpu_locality[j] = 4; ++ } ++ } ++#endif ++ ++ for (i = 0; i < PRIO_LIMIT; i++) ++ INIT_LIST_HEAD(grq.queue + i); ++ /* delimiter for bitsearch */ ++ __set_bit(PRIO_LIMIT, grq.prio_bitmap); ++ ++#ifdef CONFIG_PREEMPT_NOTIFIERS ++ INIT_HLIST_HEAD(&init_task.preempt_notifiers); ++#endif ++ ++#ifdef CONFIG_RT_MUTEXES ++ plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); ++#endif ++ ++ /* ++ * The boot idle thread does lazy MMU switching as well: ++ */ ++ atomic_inc(&init_mm.mm_count); ++ enter_lazy_tlb(&init_mm, current); ++ ++ /* ++ * Make us the idle thread. Technically, schedule() should not be ++ * called from this thread, however somewhere below it might be, ++ * but because we are the idle thread, we just pick up running again ++ * when this runqueue becomes "idle". ++ */ ++ init_idle(current, smp_processor_id()); ++ ++ /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ ++ zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); ++#ifdef CONFIG_SMP ++ /* May be allocated at isolcpus cmdline parse time */ ++ if (cpu_isolated_map == NULL) ++ zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); ++#endif /* SMP */ ++ perf_event_init(); ++} ++ ++#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP ++static inline int preempt_count_equals(int preempt_offset) ++{ ++ int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); ++ ++ return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); ++} ++ ++void __might_sleep(const char *file, int line, int preempt_offset) ++{ ++#ifdef in_atomic ++ static unsigned long prev_jiffy; /* ratelimiting */ ++ ++ if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || ++ system_state != SYSTEM_RUNNING || oops_in_progress) ++ return; ++ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) ++ return; ++ prev_jiffy = jiffies; ++ ++ printk(KERN_ERR ++ "BUG: sleeping function called from invalid context at %s:%d\n", ++ file, line); ++ printk(KERN_ERR ++ "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", ++ in_atomic(), irqs_disabled(), ++ current->pid, current->comm); ++ ++ debug_show_held_locks(current); ++ if (irqs_disabled()) ++ print_irqtrace_events(current); ++ dump_stack(); ++#endif ++} ++EXPORT_SYMBOL(__might_sleep); ++#endif ++ ++#ifdef CONFIG_MAGIC_SYSRQ ++void normalize_rt_tasks(void) ++{ ++ struct task_struct *g, *p; ++ unsigned long flags; ++ struct rq *rq; ++ int queued; ++ ++ read_lock_irq(&tasklist_lock); ++ ++ do_each_thread(g, p) { ++ if (!rt_task(p) && !iso_task(p)) ++ continue; ++ ++ raw_spin_lock_irqsave(&p->pi_lock, flags); ++ rq = __task_grq_lock(p); ++ ++ queued = task_queued(p); ++ if (queued) ++ dequeue_task(p); ++ __setscheduler(p, rq, SCHED_NORMAL, 0); ++ if (queued) { ++ enqueue_task(p); ++ try_preempt(p, rq); ++ } ++ ++ __task_grq_unlock(); ++ raw_spin_unlock_irqrestore(&p->pi_lock, flags); ++ } while_each_thread(g, p); ++ ++ read_unlock_irq(&tasklist_lock); ++} ++#endif /* CONFIG_MAGIC_SYSRQ */ ++ ++#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) ++/* ++ * These functions are only useful for the IA64 MCA handling, or kdb. ++ * ++ * They can only be called when the whole system has been ++ * stopped - every CPU needs to be quiescent, and no scheduling ++ * activity can take place. Using them for anything else would ++ * be a serious bug, and as a result, they aren't even visible ++ * under any other configuration. ++ */ ++ ++/** ++ * curr_task - return the current task for a given cpu. ++ * @cpu: the processor in question. ++ * ++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! ++ */ ++struct task_struct *curr_task(int cpu) ++{ ++ return cpu_curr(cpu); ++} ++ ++#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ ++ ++#ifdef CONFIG_IA64 ++/** ++ * set_curr_task - set the current task for a given cpu. ++ * @cpu: the processor in question. ++ * @p: the task pointer to set. ++ * ++ * Description: This function must only be used when non-maskable interrupts ++ * are serviced on a separate stack. It allows the architecture to switch the ++ * notion of the current task on a cpu in a non-blocking manner. This function ++ * must be called with all CPU's synchronised, and interrupts disabled, the ++ * and caller must save the original value of the current task (see ++ * curr_task() above) and restore that value before reenabling interrupts and ++ * re-starting the system. ++ * ++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! ++ */ ++void set_curr_task(int cpu, struct task_struct *p) ++{ ++ cpu_curr(cpu) = p; ++} ++ ++#endif ++ ++/* ++ * Use precise platform statistics if available: ++ */ ++#ifdef CONFIG_VIRT_CPU_ACCOUNTING ++void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) ++{ ++ *ut = p->utime; ++ *st = p->stime; ++} ++ ++void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) ++{ ++ struct task_cputime cputime; ++ ++ thread_group_cputime(p, &cputime); ++ ++ *ut = cputime.utime; ++ *st = cputime.stime; ++} ++#else ++ ++#ifndef nsecs_to_cputime ++# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) ++#endif ++ ++void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) ++{ ++ cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); ++ ++ rtime = nsecs_to_cputime(p->sched_time); ++ ++ if (total) { ++ u64 temp; ++ ++ temp = (u64)(rtime * utime); ++ do_div(temp, total); ++ utime = (cputime_t)temp; ++ } else ++ utime = rtime; ++ ++ /* ++ * Compare with previous values, to keep monotonicity: ++ */ ++ p->prev_utime = max(p->prev_utime, utime); ++ p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); ++ ++ *ut = p->prev_utime; ++ *st = p->prev_stime; ++} ++ ++/* ++ * Must be called with siglock held. ++ */ ++void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) ++{ ++ struct signal_struct *sig = p->signal; ++ struct task_cputime cputime; ++ cputime_t rtime, utime, total; ++ ++ thread_group_cputime(p, &cputime); ++ ++ total = cputime_add(cputime.utime, cputime.stime); ++ rtime = nsecs_to_cputime(cputime.sum_exec_runtime); ++ ++ if (total) { ++ u64 temp; ++ ++ temp = (u64)(rtime * cputime.utime); ++ do_div(temp, total); ++ utime = (cputime_t)temp; ++ } else ++ utime = rtime; ++ ++ sig->prev_utime = max(sig->prev_utime, utime); ++ sig->prev_stime = max(sig->prev_stime, ++ cputime_sub(rtime, sig->prev_utime)); ++ ++ *ut = sig->prev_utime; ++ *st = sig->prev_stime; ++} ++#endif ++ ++inline cputime_t task_gtime(struct task_struct *p) ++{ ++ return p->gtime; ++} ++ ++void __cpuinit init_idle_bootup_task(struct task_struct *idle) ++{} ++ ++#ifdef CONFIG_SCHED_DEBUG ++void proc_sched_show_task(struct task_struct *p, struct seq_file *m) ++{} ++ ++void proc_sched_set_task(struct task_struct *p) ++{} ++#endif ++ ++/* No RCU torture test support */ ++void synchronize_sched_expedited(void) ++{ ++ barrier(); ++} ++EXPORT_SYMBOL_GPL(synchronize_sched_expedited); ++ ++#ifdef CONFIG_SMP ++unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) ++{ ++ return SCHED_LOAD_SCALE; ++} ++ ++unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) ++{ ++ unsigned long weight = cpumask_weight(sched_domain_span(sd)); ++ unsigned long smt_gain = sd->smt_gain; ++ ++ smt_gain /= weight; ++ ++ return smt_gain; ++} ++#endif +Index: linux-2.6.37-ck2/kernel/sched.c +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/sched.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/kernel/sched.c 2011-02-14 09:47:50.994252001 +1100 +@@ -1,3 +1,6 @@ ++#ifdef CONFIG_SCHED_BFS ++#include "sched_bfs.c" ++#else + /* + * kernel/sched.c + * +@@ -9603,3 +9606,4 @@ + EXPORT_SYMBOL_GPL(synchronize_sched_expedited); + + #endif /* #else #ifndef CONFIG_SMP */ ++#endif /* CONFIG_SCHED_BFS */ +Index: linux-2.6.37-ck2/kernel/sysctl.c +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/sysctl.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/kernel/sysctl.c 2011-02-14 09:47:50.995252001 +1100 +@@ -117,7 +117,12 @@ + static int __maybe_unused one = 1; + static int __maybe_unused two = 2; + static unsigned long one_ul = 1; +-static int one_hundred = 100; ++static int __maybe_unused one_hundred = 100; ++#ifdef CONFIG_SCHED_BFS ++extern int rr_interval; ++extern int sched_iso_cpu; ++static int __read_mostly one_thousand = 1000; ++#endif + #ifdef CONFIG_PRINTK + static int ten_thousand = 10000; + #endif +@@ -252,7 +257,7 @@ + { } + }; + +-#ifdef CONFIG_SCHED_DEBUG ++#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_BFS) + static int min_sched_granularity_ns = 100000; /* 100 usecs */ + static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */ + static int min_wakeup_granularity_ns; /* 0 usecs */ +@@ -269,6 +274,7 @@ + #endif + + static struct ctl_table kern_table[] = { ++#ifndef CONFIG_SCHED_BFS + { + .procname = "sched_child_runs_first", + .data = &sysctl_sched_child_runs_first, +@@ -382,6 +388,7 @@ + .mode = 0644, + .proc_handler = proc_dointvec, + }, ++#endif /* !CONFIG_SCHED_BFS */ + #ifdef CONFIG_PROVE_LOCKING + { + .procname = "prove_locking", +@@ -815,6 +822,26 @@ + .proc_handler = proc_dointvec, + }, + #endif ++#ifdef CONFIG_SCHED_BFS ++ { ++ .procname = "rr_interval", ++ .data = &rr_interval, ++ .maxlen = sizeof (int), ++ .mode = 0644, ++ .proc_handler = &proc_dointvec_minmax, ++ .extra1 = &one, ++ .extra2 = &one_thousand, ++ }, ++ { ++ .procname = "iso_cpu", ++ .data = &sched_iso_cpu, ++ .maxlen = sizeof (int), ++ .mode = 0644, ++ .proc_handler = &proc_dointvec_minmax, ++ .extra1 = &zero, ++ .extra2 = &one_hundred, ++ }, ++#endif + #if defined(CONFIG_S390) && defined(CONFIG_SMP) + { + .procname = "spin_retry", +Index: linux-2.6.37-ck2/lib/Kconfig.debug +=================================================================== +--- linux-2.6.37-ck2.orig/lib/Kconfig.debug 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/lib/Kconfig.debug 2011-02-14 09:47:50.995252001 +1100 +@@ -833,7 +833,7 @@ + + config RCU_TORTURE_TEST + tristate "torture tests for RCU" +- depends on DEBUG_KERNEL ++ depends on DEBUG_KERNEL && !SCHED_BFS + default n + help + This option provides a kernel module that runs torture tests +Index: linux-2.6.37-ck2/include/linux/jiffies.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/jiffies.h 2010-02-25 21:51:52.000000000 +1100 ++++ linux-2.6.37-ck2/include/linux/jiffies.h 2011-02-14 09:47:50.995252001 +1100 +@@ -164,7 +164,7 @@ + * Have the 32 bit jiffies value wrap 5 minutes after boot + * so jiffies wrap bugs show up earlier. + */ +-#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) ++#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-10*HZ)) + + /* + * Change timeval to jiffies, trying to avoid the +Index: linux-2.6.37-ck2/mm/vmscan.c +=================================================================== +--- linux-2.6.37-ck2.orig/mm/vmscan.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/mm/vmscan.c 2011-02-14 10:11:01.693252000 +1100 +@@ -36,6 +36,7 @@ + #include <linux/rwsem.h> + #include <linux/delay.h> + #include <linux/kthread.h> ++#include <linux/timer.h> + #include <linux/freezer.h> + #include <linux/memcontrol.h> + #include <linux/delayacct.h> +@@ -133,7 +134,7 @@ + /* + * From 0 .. 100. Higher means more swappy. + */ +-int vm_swappiness = 60; ++int vm_swappiness; + long vm_total_pages; /* The total number of pages which the VM controls */ + + static LIST_HEAD(shrinker_list); +@@ -900,7 +901,7 @@ + + activate_locked: + /* Not a candidate for swapping, so reclaim swap space. */ +- if (PageSwapCache(page) && vm_swap_full()) ++ if (PageSwapCache(page)) + try_to_free_swap(page); + VM_BUG_ON(PageActive(page)); + SetPageActive(page); +@@ -1855,6 +1856,35 @@ + } + + /* ++ * Helper functions to adjust nice level of kswapd, based on the priority of ++ * the task (p) that called it. If it is already higher priority we do not ++ * demote its nice level since it is still working on behalf of a higher ++ * priority task. With kernel threads we leave it at nice 0. ++ * ++ * We don't ever run kswapd real time, so if a real time task calls kswapd we ++ * set it to highest SCHED_NORMAL priority. ++ */ ++static inline int effective_sc_prio(struct task_struct *p) ++{ ++ if (likely(p->mm)) { ++ if (rt_task(p)) ++ return -20; ++ if (p->policy == SCHED_IDLEPRIO) ++ return 19; ++ return task_nice(p); ++ } ++ return 0; ++} ++ ++static void set_kswapd_nice(struct task_struct *kswapd, int active) ++{ ++ long nice = effective_sc_prio(current); ++ ++ if (task_nice(kswapd) > nice || !active) ++ set_user_nice(kswapd, nice); ++} ++ ++/* + * This is the direct reclaim path, for page-allocating processes. We only + * try to reclaim pages from zones which will satisfy the caller's allocation + * request. +@@ -2371,6 +2401,8 @@ + return sc.nr_reclaimed; + } + ++#define WT_EXPIRY (HZ * 5) /* Time to wakeup watermark_timer */ ++ + /* + * The background pageout daemon, started as a kernel thread + * from the init process. +@@ -2421,6 +2453,8 @@ + unsigned long new_order; + int ret; + ++ /* kswapd has been busy so delay watermark_timer */ ++ mod_timer(&pgdat->watermark_timer, jiffies + WT_EXPIRY); + prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); + new_order = pgdat->kswapd_max_order; + pgdat->kswapd_max_order = 0; +@@ -2457,6 +2491,7 @@ + } + } + ++ set_user_nice(tsk, 0); + order = pgdat->kswapd_max_order; + } + finish_wait(&pgdat->kswapd_wait, &wait); +@@ -2483,6 +2518,7 @@ + void wakeup_kswapd(struct zone *zone, int order) + { + pg_data_t *pgdat; ++ int active; + + if (!populated_zone(zone)) + return; +@@ -2495,7 +2531,9 @@ + pgdat = zone->zone_pgdat; + if (pgdat->kswapd_max_order < order) + pgdat->kswapd_max_order = order; +- if (!waitqueue_active(&pgdat->kswapd_wait)) ++ active = waitqueue_active(&pgdat->kswapd_wait); ++ set_kswapd_nice(pgdat->kswapd, active); ++ if (!active) + return; + if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) + return; +@@ -2601,20 +2639,57 @@ + } + + /* ++ * We wake up kswapd every WT_EXPIRY till free ram is above pages_lots ++ */ ++static void watermark_wakeup(unsigned long data) ++{ ++ pg_data_t *pgdat = (pg_data_t *)data; ++ struct timer_list *wt = &pgdat->watermark_timer; ++ int i; ++ ++ if (!waitqueue_active(&pgdat->kswapd_wait) || above_background_load()) ++ goto out; ++ for (i = pgdat->nr_zones - 1; i >= 0; i--) { ++ struct zone *z = pgdat->node_zones + i; ++ ++ if (!populated_zone(z) || is_highmem(z)) { ++ /* We are better off leaving highmem full */ ++ continue; ++ } ++ if (!zone_watermark_ok(z, 0, lots_wmark_pages(z), 0, 0)) { ++ wake_up_interruptible(&pgdat->kswapd_wait); ++ goto out; ++ } ++ } ++out: ++ mod_timer(wt, jiffies + WT_EXPIRY); ++ return; ++} ++ ++/* + * This kswapd start function will be called by init and node-hot-add. + * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. + */ + int kswapd_run(int nid) + { + pg_data_t *pgdat = NODE_DATA(nid); ++ struct timer_list *wt; + int ret = 0; + + if (pgdat->kswapd) + return 0; + ++ wt = &pgdat->watermark_timer; ++ init_timer(wt); ++ wt->data = (unsigned long)pgdat; ++ wt->function = watermark_wakeup; ++ wt->expires = jiffies + WT_EXPIRY; ++ add_timer(wt); ++ + pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); + if (IS_ERR(pgdat->kswapd)) { + /* failure at boot is fatal */ ++ del_timer(wt); + BUG_ON(system_state == SYSTEM_BOOTING); + printk("Failed to start kswapd on node %d\n",nid); + ret = -1; +Index: linux-2.6.37-ck2/include/linux/swap.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/swap.h 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/include/linux/swap.h 2011-02-14 10:11:09.770252000 +1100 +@@ -192,7 +192,7 @@ + int next; /* swapfile to be used next */ + }; + +-/* Swap 50% full? Release swapcache more aggressively.. */ ++/* Swap 50% full? */ + #define vm_swap_full() (nr_swap_pages*2 < total_swap_pages) + + /* linux/mm/page_alloc.c */ +@@ -206,6 +206,7 @@ + + + /* linux/mm/swap.c */ ++extern void ____lru_cache_add(struct page *, enum lru_list lru, int tail); + extern void __lru_cache_add(struct page *, enum lru_list lru); + extern void lru_cache_add_lru(struct page *, enum lru_list lru); + extern void activate_page(struct page *); +@@ -226,9 +227,14 @@ + __lru_cache_add(page, LRU_INACTIVE_ANON); + } + ++static inline void lru_cache_add_file_tail(struct page *page, int tail) ++{ ++ ____lru_cache_add(page, LRU_INACTIVE_FILE, tail); ++} ++ + static inline void lru_cache_add_file(struct page *page) + { +- __lru_cache_add(page, LRU_INACTIVE_FILE); ++ ____lru_cache_add(page, LRU_INACTIVE_FILE, 0); + } + + /* LRU Isolation modes. */ +@@ -348,9 +354,10 @@ + extern void grab_swap_token(struct mm_struct *); + extern void __put_swap_token(struct mm_struct *); + ++/* Only allow swap token to have effect if swap is full */ + static inline int has_swap_token(struct mm_struct *mm) + { +- return (mm == swap_token_mm); ++ return (mm == swap_token_mm && vm_swap_full()); + } + + static inline void put_swap_token(struct mm_struct *mm) +Index: linux-2.6.37-ck2/mm/memory.c +=================================================================== +--- linux-2.6.37-ck2.orig/mm/memory.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/mm/memory.c 2011-02-14 10:11:00.984252001 +1100 +@@ -2754,7 +2754,7 @@ + mem_cgroup_commit_charge_swapin(page, ptr); + + swap_free(entry); +- if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) ++ if ((vma->vm_flags & VM_LOCKED) || PageMlocked(page)) + try_to_free_swap(page); + unlock_page(page); + if (swapcache) { +Index: linux-2.6.37-ck2/mm/swapfile.c +=================================================================== +--- linux-2.6.37-ck2.orig/mm/swapfile.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/mm/swapfile.c 2011-02-14 10:11:00.985252001 +1100 +@@ -321,7 +321,7 @@ + scan_base = offset = si->lowest_bit; + + /* reuse swap entry of cache-only swap if not busy. */ +- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { ++ if (si->swap_map[offset] == SWAP_HAS_CACHE) { + int swap_was_freed; + spin_unlock(&swap_lock); + swap_was_freed = __try_to_reclaim_swap(si, offset); +@@ -410,7 +410,7 @@ + spin_lock(&swap_lock); + goto checks; + } +- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { ++ if (si->swap_map[offset] == SWAP_HAS_CACHE) { + spin_lock(&swap_lock); + goto checks; + } +@@ -425,7 +425,7 @@ + spin_lock(&swap_lock); + goto checks; + } +- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { ++ if (si->swap_map[offset] == SWAP_HAS_CACHE) { + spin_lock(&swap_lock); + goto checks; + } +@@ -739,8 +739,7 @@ + * Not mapped elsewhere, or swap space full? Free it! + * Also recheck PageSwapCache now page is locked (above). + */ +- if (PageSwapCache(page) && !PageWriteback(page) && +- (!page_mapped(page) || vm_swap_full())) { ++ if (PageSwapCache(page) && !PageWriteback(page)) { + delete_from_swap_cache(page); + SetPageDirty(page); + } +Index: linux-2.6.37-ck2/include/linux/mmzone.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/mmzone.h 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/include/linux/mmzone.h 2011-02-14 10:11:01.470252001 +1100 +@@ -15,6 +15,7 @@ + #include <linux/seqlock.h> + #include <linux/nodemask.h> + #include <linux/pageblock-flags.h> ++#include <linux/timer.h> + #include <generated/bounds.h> + #include <asm/atomic.h> + #include <asm/page.h> +@@ -161,12 +162,14 @@ + WMARK_MIN, + WMARK_LOW, + WMARK_HIGH, ++ WMARK_LOTS, + NR_WMARK + }; + + #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) + #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) + #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) ++#define lots_wmark_pages(z) (z->watermark[WMARK_LOTS]) + + struct per_cpu_pages { + int count; /* number of pages in the list */ +@@ -343,7 +346,7 @@ + ZONE_PADDING(_pad1_) + + /* Fields commonly accessed by the page reclaim scanner */ +- spinlock_t lru_lock; ++ spinlock_t lru_lock; + struct zone_lru { + struct list_head list; + } lru[NR_LRU_LISTS]; +@@ -645,6 +648,7 @@ + wait_queue_head_t kswapd_wait; + struct task_struct *kswapd; + int kswapd_max_order; ++ struct timer_list watermark_timer; + } pg_data_t; + + #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) +Index: linux-2.6.37-ck2/include/linux/mm_inline.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/mm_inline.h 2009-12-03 21:40:09.000000000 +1100 ++++ linux-2.6.37-ck2/include/linux/mm_inline.h 2011-02-14 10:11:09.770252000 +1100 +@@ -20,14 +20,24 @@ + } + + static inline void +-add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l) ++__add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l, int tail) + { +- list_add(&page->lru, &zone->lru[l].list); ++ /* See if this should be added to the tail of this lru list */ ++ if (tail) ++ list_add_tail(&page->lru, &zone->lru[l].list); ++ else ++ list_add(&page->lru, &zone->lru[l].list); + __inc_zone_state(zone, NR_LRU_BASE + l); + mem_cgroup_add_lru_list(page, l); + } + + static inline void ++add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l) ++{ ++ __add_page_to_lru_list(zone, page, l, 0); ++} ++ ++static inline void + del_page_from_lru_list(struct zone *zone, struct page *page, enum lru_list l) + { + list_del(&page->lru); +Index: linux-2.6.37-ck2/mm/filemap.c +=================================================================== +--- linux-2.6.37-ck2.orig/mm/filemap.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/mm/filemap.c 2011-02-14 10:11:09.772252000 +1100 +@@ -439,8 +439,8 @@ + } + EXPORT_SYMBOL(add_to_page_cache_locked); + +-int add_to_page_cache_lru(struct page *page, struct address_space *mapping, +- pgoff_t offset, gfp_t gfp_mask) ++int __add_to_page_cache_lru(struct page *page, struct address_space *mapping, ++ pgoff_t offset, gfp_t gfp_mask, int tail) + { + int ret; + +@@ -456,12 +456,18 @@ + ret = add_to_page_cache(page, mapping, offset, gfp_mask); + if (ret == 0) { + if (page_is_file_cache(page)) +- lru_cache_add_file(page); ++ lru_cache_add_file_tail(page, tail); + else + lru_cache_add_anon(page); + } + return ret; + } ++ ++int add_to_page_cache_lru(struct page *page, struct address_space *mapping, ++ pgoff_t offset, gfp_t gfp_mask) ++{ ++ return __add_to_page_cache_lru(page, mapping, offset, gfp_mask, 0); ++} + EXPORT_SYMBOL_GPL(add_to_page_cache_lru); + + #ifdef CONFIG_NUMA +@@ -968,6 +974,28 @@ + ra->ra_pages /= 4; + } + ++static inline int nr_mapped(void) ++{ ++ return global_page_state(NR_FILE_MAPPED) + ++ global_page_state(NR_ANON_PAGES); ++} ++ ++/* ++ * This examines how large in pages a file size is and returns 1 if it is ++ * more than half the unmapped ram. Avoid doing read_page_state which is ++ * expensive unless we already know it is likely to be large enough. ++ */ ++static int large_isize(unsigned long nr_pages) ++{ ++ if (nr_pages * 6 > vm_total_pages) { ++ unsigned long unmapped_ram = vm_total_pages - nr_mapped(); ++ ++ if (nr_pages * 2 > unmapped_ram) ++ return 1; ++ } ++ return 0; ++} ++ + /** + * do_generic_file_read - generic file read routine + * @filp: the file to read +@@ -992,7 +1020,7 @@ + pgoff_t prev_index; + unsigned long offset; /* offset into pagecache page */ + unsigned int prev_offset; +- int error; ++ int error, tail = 0; + + index = *ppos >> PAGE_CACHE_SHIFT; + prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; +@@ -1003,7 +1031,7 @@ + for (;;) { + struct page *page; + pgoff_t end_index; +- loff_t isize; ++ loff_t isize = 0; + unsigned long nr, ret; + + cond_resched(); +@@ -1177,8 +1205,16 @@ + desc->error = -ENOMEM; + goto out; + } +- error = add_to_page_cache_lru(page, mapping, +- index, GFP_KERNEL); ++ /* ++ * If we know the file is large we add the pages read to the ++ * end of the lru as we're unlikely to be able to cache the ++ * whole file in ram so make those pages the first to be ++ * dropped if not referenced soon. ++ */ ++ if (large_isize(end_index)) ++ tail = 1; ++ error = __add_to_page_cache_lru(page, mapping, ++ index, GFP_KERNEL, tail); + if (error) { + page_cache_release(page); + if (error == -EEXIST) +Index: linux-2.6.37-ck2/mm/swap.c +=================================================================== +--- linux-2.6.37-ck2.orig/mm/swap.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/mm/swap.c 2011-02-14 10:11:09.772252000 +1100 +@@ -215,15 +215,23 @@ + + EXPORT_SYMBOL(mark_page_accessed); + +-void __lru_cache_add(struct page *page, enum lru_list lru) ++void ______pagevec_lru_add(struct pagevec *pvec, enum lru_list lru, int tail); ++ ++void ____lru_cache_add(struct page *page, enum lru_list lru, int tail) + { + struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; + + page_cache_get(page); + if (!pagevec_add(pvec, page)) +- ____pagevec_lru_add(pvec, lru); ++ ______pagevec_lru_add(pvec, lru, tail); + put_cpu_var(lru_add_pvecs); + } ++EXPORT_SYMBOL(____lru_cache_add); ++ ++void __lru_cache_add(struct page *page, enum lru_list lru) ++{ ++ ____lru_cache_add(page, lru, 0); ++} + EXPORT_SYMBOL(__lru_cache_add); + + /** +@@ -231,7 +239,7 @@ + * @page: the page to be added to the LRU. + * @lru: the LRU list to which the page is added. + */ +-void lru_cache_add_lru(struct page *page, enum lru_list lru) ++void __lru_cache_add_lru(struct page *page, enum lru_list lru, int tail) + { + if (PageActive(page)) { + VM_BUG_ON(PageUnevictable(page)); +@@ -242,7 +250,12 @@ + } + + VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); +- __lru_cache_add(page, lru); ++ ____lru_cache_add(page, lru, tail); ++} ++ ++void lru_cache_add_lru(struct page *page, enum lru_list lru) ++{ ++ __lru_cache_add_lru(page, lru, 0); + } + + /** +@@ -403,7 +416,7 @@ + * Add the passed pages to the LRU, then drop the caller's refcount + * on them. Reinitialises the caller's pagevec. + */ +-void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) ++void ______pagevec_lru_add(struct pagevec *pvec, enum lru_list lru, int tail) + { + int i; + struct zone *zone = NULL; +@@ -431,7 +444,7 @@ + if (active) + SetPageActive(page); + update_page_reclaim_stat(zone, page, file, active); +- add_page_to_lru_list(zone, page, lru); ++ __add_page_to_lru_list(zone, page, lru, tail); + } + if (zone) + spin_unlock_irq(&zone->lru_lock); +@@ -439,6 +452,11 @@ + pagevec_reinit(pvec); + } + ++void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) ++{ ++ ______pagevec_lru_add(pvec, lru, 0); ++} ++ + EXPORT_SYMBOL(____pagevec_lru_add); + + /* +Index: linux-2.6.37-ck2/mm/page-writeback.c +=================================================================== +--- linux-2.6.37-ck2.orig/mm/page-writeback.c 2011-01-06 14:04:10.000000000 +1100 ++++ linux-2.6.37-ck2/mm/page-writeback.c 2011-02-14 10:11:10.037252000 +1100 +@@ -78,7 +78,7 @@ + /* + * The generator of dirty data starts writeback at this percentage + */ +-int vm_dirty_ratio = 20; ++int vm_dirty_ratio = 5; + + /* + * vm_dirty_bytes starts at 0 (disabled) so that it is a function of +Index: linux-2.6.37-ck2/arch/x86/Kconfig +=================================================================== +--- linux-2.6.37-ck2.orig/arch/x86/Kconfig 2011-01-06 14:04:08.000000000 +1100 ++++ linux-2.6.37-ck2/arch/x86/Kconfig 2011-02-14 10:11:10.260252001 +1100 +@@ -1046,7 +1046,7 @@ + + choice + depends on EXPERIMENTAL +- prompt "Memory split" if EMBEDDED ++ prompt "Memory split" + default VMSPLIT_3G + depends on X86_32 + ---help--- +@@ -1066,17 +1066,17 @@ + option alone! + + config VMSPLIT_3G +- bool "3G/1G user/kernel split" ++ bool "Default 896MB lowmem (3G/1G user/kernel split)" + config VMSPLIT_3G_OPT + depends on !X86_PAE +- bool "3G/1G user/kernel split (for full 1G low memory)" ++ bool "1GB lowmem (3G/1G user/kernel split)" + config VMSPLIT_2G +- bool "2G/2G user/kernel split" ++ bool "2GB lowmem (2G/2G user/kernel split)" + config VMSPLIT_2G_OPT + depends on !X86_PAE +- bool "2G/2G user/kernel split (for full 2G low memory)" ++ bool "2GB lowmem (2G/2G user/kernel split)" + config VMSPLIT_1G +- bool "1G/3G user/kernel split" ++ bool "3GB lowmem (1G/3G user/kernel split)" + endchoice + + config PAGE_OFFSET +Index: linux-2.6.37-ck2/kernel/Kconfig.hz +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/Kconfig.hz 2009-06-10 13:05:27.000000000 +1000 ++++ linux-2.6.37-ck2/kernel/Kconfig.hz 2011-02-14 10:11:10.921252001 +1100 +@@ -4,7 +4,7 @@ + + choice + prompt "Timer frequency" +- default HZ_250 ++ default HZ_1000 + help + Allows the configuration of the timer frequency. It is customary + to have the timer interrupt run at 1000 Hz but 100 Hz may be more +@@ -23,13 +23,14 @@ + with lots of processors that may show reduced performance if + too many timer interrupts are occurring. + +- config HZ_250 ++ config HZ_250_NODEFAULT + bool "250 HZ" + help +- 250 Hz is a good compromise choice allowing server performance +- while also showing good interactive responsiveness even +- on SMP and NUMA systems. If you are going to be using NTSC video +- or multimedia, selected 300Hz instead. ++ 250 HZ is a lousy compromise choice allowing server interactivity ++ while also showing desktop throughput and no extra power saving on ++ laptops. No good for anything. ++ ++ Recommend 100 or 1000 instead. + + config HZ_300 + bool "300 HZ" +@@ -43,16 +44,82 @@ + bool "1000 HZ" + help + 1000 Hz is the preferred choice for desktop systems and other +- systems requiring fast interactive responses to events. ++ systems requiring fast interactive responses to events. Laptops ++ can also benefit from this choice without sacrificing battery life ++ if dynticks is also enabled. ++ ++ config HZ_1500 ++ bool "1500 HZ" ++ help ++ 1500 Hz is an insane value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ ++ config HZ_2000 ++ bool "2000 HZ" ++ help ++ 2000 Hz is an insane value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ ++ config HZ_3000 ++ bool "3000 HZ" ++ help ++ 3000 Hz is an insane value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ ++ config HZ_4000 ++ bool "4000 HZ" ++ help ++ 4000 Hz is an insane value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ ++ config HZ_5000 ++ bool "5000 HZ" ++ help ++ 5000 Hz is an obscene value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ ++ config HZ_7500 ++ bool "7500 HZ" ++ help ++ 7500 Hz is an obscene value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ ++ config HZ_10000 ++ bool "10000 HZ" ++ help ++ 10000 Hz is an obscene value to use to run broken software that is Hz ++ limited. ++ ++ Being over 1000, driver breakage is likely. ++ + + endchoice + + config HZ + int + default 100 if HZ_100 +- default 250 if HZ_250 ++ default 250 if HZ_250_NODEFAULT + default 300 if HZ_300 + default 1000 if HZ_1000 ++ default 1500 if HZ_1500 ++ default 2000 if HZ_2000 ++ default 3000 if HZ_3000 ++ default 4000 if HZ_4000 ++ default 5000 if HZ_5000 ++ default 7500 if HZ_7500 ++ default 10000 if HZ_10000 + + config SCHED_HRTICK + def_bool HIGH_RES_TIMERS && (!SMP || USE_GENERIC_SMP_HELPERS) +Index: linux-2.6.37-ck2/arch/x86/kernel/cpu/proc.c +=================================================================== +--- linux-2.6.37-ck2.orig/arch/x86/kernel/cpu/proc.c 2009-12-03 21:39:58.000000000 +1100 ++++ linux-2.6.37-ck2/arch/x86/kernel/cpu/proc.c 2011-02-14 10:11:10.919252001 +1100 +@@ -109,7 +109,7 @@ + + seq_printf(m, "\nbogomips\t: %lu.%02lu\n", + c->loops_per_jiffy/(500000/HZ), +- (c->loops_per_jiffy/(5000/HZ)) % 100); ++ (c->loops_per_jiffy * 10 /(50000/HZ)) % 100); + + #ifdef CONFIG_X86_64 + if (c->x86_tlbsize > 0) +Index: linux-2.6.37-ck2/arch/x86/kernel/smpboot.c +=================================================================== +--- linux-2.6.37-ck2.orig/arch/x86/kernel/smpboot.c 2011-01-06 14:04:08.000000000 +1100 ++++ linux-2.6.37-ck2/arch/x86/kernel/smpboot.c 2011-02-14 10:11:10.920252001 +1100 +@@ -497,7 +497,7 @@ + "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", + num_online_cpus(), + bogosum/(500000/HZ), +- (bogosum/(5000/HZ))%100); ++ (bogosum * 10/(50000/HZ))%100); + + pr_debug("Before bogocount - setting activated=1.\n"); + } +Index: linux-2.6.37-ck2/include/linux/nfsd/stats.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/linux/nfsd/stats.h 2009-06-10 13:05:27.000000000 +1000 ++++ linux-2.6.37-ck2/include/linux/nfsd/stats.h 2011-02-14 10:11:10.920252001 +1100 +@@ -11,8 +11,8 @@ + + #include <linux/nfs4.h> + +-/* thread usage wraps very million seconds (approx one fortnight) */ +-#define NFSD_USAGE_WRAP (HZ*1000000) ++/* thread usage wraps every one hundred thousand seconds (approx one day) */ ++#define NFSD_USAGE_WRAP (HZ*100000) + + #ifdef __KERNEL__ + +Index: linux-2.6.37-ck2/include/net/inet_timewait_sock.h +=================================================================== +--- linux-2.6.37-ck2.orig/include/net/inet_timewait_sock.h 2010-08-02 11:12:25.000000000 +1000 ++++ linux-2.6.37-ck2/include/net/inet_timewait_sock.h 2011-02-14 10:11:10.920252001 +1100 +@@ -39,8 +39,8 @@ + * If time > 4sec, it is "slow" path, no recycling is required, + * so that we select tick to get range about 4 seconds. + */ +-#if HZ <= 16 || HZ > 4096 +-# error Unsupported: HZ <= 16 or HZ > 4096 ++#if HZ <= 16 || HZ > 16384 ++# error Unsupported: HZ <= 16 or HZ > 16384 + #elif HZ <= 32 + # define INET_TWDR_RECYCLE_TICK (5 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG) + #elif HZ <= 64 +@@ -55,8 +55,12 @@ + # define INET_TWDR_RECYCLE_TICK (10 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG) + #elif HZ <= 2048 + # define INET_TWDR_RECYCLE_TICK (11 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG) +-#else ++#elif HZ <= 4096 + # define INET_TWDR_RECYCLE_TICK (12 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG) ++#elif HZ <= 8192 ++# define INET_TWDR_RECYCLE_TICK (13 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG) ++#else ++# define INET_TWDR_RECYCLE_TICK (14 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG) + #endif + + /* TIME_WAIT reaping mechanism. */ +Index: linux-2.6.37-ck2/init/calibrate.c +=================================================================== +--- linux-2.6.37-ck2.orig/init/calibrate.c 2010-02-25 21:51:52.000000000 +1100 ++++ linux-2.6.37-ck2/init/calibrate.c 2011-02-14 10:11:10.921252001 +1100 +@@ -176,7 +176,7 @@ + if (!printed) + pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n", + loops_per_jiffy/(500000/HZ), +- (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); ++ (loops_per_jiffy * 10 /(50000/HZ)) % 100, loops_per_jiffy); + + printed = true; + } +Index: linux-2.6.37-ck2/kernel/Kconfig.preempt +=================================================================== +--- linux-2.6.37-ck2.orig/kernel/Kconfig.preempt 2009-06-10 13:05:27.000000000 +1000 ++++ linux-2.6.37-ck2/kernel/Kconfig.preempt 2011-02-14 10:11:11.217252001 +1100 +@@ -1,7 +1,7 @@ + + choice + prompt "Preemption Model" +- default PREEMPT_NONE ++ default PREEMPT + + config PREEMPT_NONE + bool "No Forced Preemption (Server)" +@@ -17,7 +17,7 @@ + latencies. + + config PREEMPT_VOLUNTARY +- bool "Voluntary Kernel Preemption (Desktop)" ++ bool "Voluntary Kernel Preemption (Nothing)" + help + This option reduces the latency of the kernel by adding more + "explicit preemption points" to the kernel code. These new +@@ -31,7 +31,8 @@ + applications to run more 'smoothly' even when the system is + under load. + +- Select this if you are building a kernel for a desktop system. ++ Select this for no system in particular (choose Preemptible ++ instead on a desktop if you know what's good for you). + + config PREEMPT + bool "Preemptible Kernel (Low-Latency Desktop)" +Index: linux-2.6.37-ck2/drivers/cpufreq/cpufreq_ondemand.c +=================================================================== +--- linux-2.6.37-ck2.orig/drivers/cpufreq/cpufreq_ondemand.c 2011-01-06 14:04:08.000000000 +1100 ++++ linux-2.6.37-ck2/drivers/cpufreq/cpufreq_ondemand.c 2011-02-14 10:11:11.438252001 +1100 +@@ -28,12 +28,12 @@ + * It helps to keep variable names smaller, simpler + */ + +-#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10) +-#define DEF_FREQUENCY_UP_THRESHOLD (80) ++#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (17) ++#define DEF_FREQUENCY_UP_THRESHOLD (63) + #define DEF_SAMPLING_DOWN_FACTOR (1) + #define MAX_SAMPLING_DOWN_FACTOR (100000) + #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3) +-#define MICRO_FREQUENCY_UP_THRESHOLD (95) ++#define MICRO_FREQUENCY_UP_THRESHOLD (80) + #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) + #define MIN_FREQUENCY_UP_THRESHOLD (11) + #define MAX_FREQUENCY_UP_THRESHOLD (100) +@@ -513,10 +513,10 @@ + + /* + * Every sampling_rate, we check, if current idle time is less +- * than 20% (default), then we try to increase frequency ++ * than 37% (default), then we try to increase frequency + * Every sampling_rate, we look for a the lowest + * frequency which can sustain the load while keeping idle time over +- * 30%. If such a frequency exist, we try to decrease to this frequency. ++ * 50%. If such a frequency exist, we try to decrease to this frequency. + * + * Any frequency increase takes it to the maximum frequency. + * Frequency reduction happens at minimum steps of +Index: linux-2.6.37-ck2/Makefile +=================================================================== +--- linux-2.6.37-ck2.orig/Makefile 2011-01-06 14:04:07.000000000 +1100 ++++ linux-2.6.37-ck2/Makefile 2011-02-14 10:11:20.469252000 +1100 +@@ -10,6 +10,10 @@ + # Comments in this file are targeted only to the developer, do not + # expect to learn how to build the kernel reading this file. + ++CKVERSION = -ck2 ++CKNAME = BFS Powered ++EXTRAVERSION := $(EXTRAVERSION)$(CKVERSION) ++ + # Do not: + # o use make's built-in rules and variables + # (this increases performance and avoids hard-to-debug behaviour); |