summaryrefslogtreecommitdiffstats
path: root/abs/core/kernel26/tmp
diff options
context:
space:
mode:
Diffstat (limited to 'abs/core/kernel26/tmp')
-rw-r--r--abs/core/kernel26/tmp/patch-2.6.37-ck29083
1 files changed, 0 insertions, 9083 deletions
diff --git a/abs/core/kernel26/tmp/patch-2.6.37-ck2 b/abs/core/kernel26/tmp/patch-2.6.37-ck2
deleted file mode 100644
index c4657e7..0000000
--- a/abs/core/kernel26/tmp/patch-2.6.37-ck2
+++ /dev/null
@@ -1,9083 +0,0 @@
-Index: linux-2.6.37-ck2/arch/powerpc/platforms/cell/spufs/sched.c
-===================================================================
---- linux-2.6.37-ck2.orig/arch/powerpc/platforms/cell/spufs/sched.c 2010-05-17 18:51:19.000000000 +1000
-+++ linux-2.6.37-ck2/arch/powerpc/platforms/cell/spufs/sched.c 2011-02-14 09:47:50.982252001 +1100
-@@ -64,11 +64,6 @@
- static struct timer_list spuloadavg_timer;
-
- /*
-- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
-- */
--#define NORMAL_PRIO 120
--
--/*
- * Frequency of the spu scheduler tick. By default we do one SPU scheduler
- * tick for every 10 CPU scheduler ticks.
- */
-Index: linux-2.6.37-ck2/Documentation/scheduler/sched-BFS.txt
-===================================================================
---- /dev/null 1970-01-01 00:00:00.000000000 +0000
-+++ linux-2.6.37-ck2/Documentation/scheduler/sched-BFS.txt 2011-02-14 09:47:50.984252001 +1100
-@@ -0,0 +1,351 @@
-+BFS - The Brain Fuck Scheduler by Con Kolivas.
-+
-+Goals.
-+
-+The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to
-+completely do away with the complex designs of the past for the cpu process
-+scheduler and instead implement one that is very simple in basic design.
-+The main focus of BFS is to achieve excellent desktop interactivity and
-+responsiveness without heuristics and tuning knobs that are difficult to
-+understand, impossible to model and predict the effect of, and when tuned to
-+one workload cause massive detriment to another.
-+
-+
-+Design summary.
-+
-+BFS is best described as a single runqueue, O(n) lookup, earliest effective
-+virtual deadline first design, loosely based on EEVDF (earliest eligible virtual
-+deadline first) and my previous Staircase Deadline scheduler. Each component
-+shall be described in order to understand the significance of, and reasoning for
-+it. The codebase when the first stable version was released was approximately
-+9000 lines less code than the existing mainline linux kernel scheduler (in
-+2.6.31). This does not even take into account the removal of documentation and
-+the cgroups code that is not used.
-+
-+Design reasoning.
-+
-+The single runqueue refers to the queued but not running processes for the
-+entire system, regardless of the number of CPUs. The reason for going back to
-+a single runqueue design is that once multiple runqueues are introduced,
-+per-CPU or otherwise, there will be complex interactions as each runqueue will
-+be responsible for the scheduling latency and fairness of the tasks only on its
-+own runqueue, and to achieve fairness and low latency across multiple CPUs, any
-+advantage in throughput of having CPU local tasks causes other disadvantages.
-+This is due to requiring a very complex balancing system to at best achieve some
-+semblance of fairness across CPUs and can only maintain relatively low latency
-+for tasks bound to the same CPUs, not across them. To increase said fairness
-+and latency across CPUs, the advantage of local runqueue locking, which makes
-+for better scalability, is lost due to having to grab multiple locks.
-+
-+A significant feature of BFS is that all accounting is done purely based on CPU
-+used and nowhere is sleep time used in any way to determine entitlement or
-+interactivity. Interactivity "estimators" that use some kind of sleep/run
-+algorithm are doomed to fail to detect all interactive tasks, and to falsely tag
-+tasks that aren't interactive as being so. The reason for this is that it is
-+close to impossible to determine that when a task is sleeping, whether it is
-+doing it voluntarily, as in a userspace application waiting for input in the
-+form of a mouse click or otherwise, or involuntarily, because it is waiting for
-+another thread, process, I/O, kernel activity or whatever. Thus, such an
-+estimator will introduce corner cases, and more heuristics will be required to
-+cope with those corner cases, introducing more corner cases and failed
-+interactivity detection and so on. Interactivity in BFS is built into the design
-+by virtue of the fact that tasks that are waking up have not used up their quota
-+of CPU time, and have earlier effective deadlines, thereby making it very likely
-+they will preempt any CPU bound task of equivalent nice level. See below for
-+more information on the virtual deadline mechanism. Even if they do not preempt
-+a running task, because the rr interval is guaranteed to have a bound upper
-+limit on how long a task will wait for, it will be scheduled within a timeframe
-+that will not cause visible interface jitter.
-+
-+
-+Design details.
-+
-+Task insertion.
-+
-+BFS inserts tasks into each relevant queue as an O(1) insertion into a double
-+linked list. On insertion, *every* running queue is checked to see if the newly
-+queued task can run on any idle queue, or preempt the lowest running task on the
-+system. This is how the cross-CPU scheduling of BFS achieves significantly lower
-+latency per extra CPU the system has. In this case the lookup is, in the worst
-+case scenario, O(n) where n is the number of CPUs on the system.
-+
-+Data protection.
-+
-+BFS has one single lock protecting the process local data of every task in the
-+global queue. Thus every insertion, removal and modification of task data in the
-+global runqueue needs to grab the global lock. However, once a task is taken by
-+a CPU, the CPU has its own local data copy of the running process' accounting
-+information which only that CPU accesses and modifies (such as during a
-+timer tick) thus allowing the accounting data to be updated lockless. Once a
-+CPU has taken a task to run, it removes it from the global queue. Thus the
-+global queue only ever has, at most,
-+
-+ (number of tasks requesting cpu time) - (number of logical CPUs) + 1
-+
-+tasks in the global queue. This value is relevant for the time taken to look up
-+tasks during scheduling. This will increase if many tasks with CPU affinity set
-+in their policy to limit which CPUs they're allowed to run on if they outnumber
-+the number of CPUs. The +1 is because when rescheduling a task, the CPU's
-+currently running task is put back on the queue. Lookup will be described after
-+the virtual deadline mechanism is explained.
-+
-+Virtual deadline.
-+
-+The key to achieving low latency, scheduling fairness, and "nice level"
-+distribution in BFS is entirely in the virtual deadline mechanism. The one
-+tunable in BFS is the rr_interval, or "round robin interval". This is the
-+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
-+tasks of the same nice level will be running for, or looking at it the other
-+way around, the longest duration two tasks of the same nice level will be
-+delayed for. When a task requests cpu time, it is given a quota (time_slice)
-+equal to the rr_interval and a virtual deadline. The virtual deadline is
-+offset from the current time in jiffies by this equation:
-+
-+ jiffies + (prio_ratio * rr_interval)
-+
-+The prio_ratio is determined as a ratio compared to the baseline of nice -20
-+and increases by 10% per nice level. The deadline is a virtual one only in that
-+no guarantee is placed that a task will actually be scheduled by this time, but
-+it is used to compare which task should go next. There are three components to
-+how a task is next chosen. First is time_slice expiration. If a task runs out
-+of its time_slice, it is descheduled, the time_slice is refilled, and the
-+deadline reset to that formula above. Second is sleep, where a task no longer
-+is requesting CPU for whatever reason. The time_slice and deadline are _not_
-+adjusted in this case and are just carried over for when the task is next
-+scheduled. Third is preemption, and that is when a newly waking task is deemed
-+higher priority than a currently running task on any cpu by virtue of the fact
-+that it has an earlier virtual deadline than the currently running task. The
-+earlier deadline is the key to which task is next chosen for the first and
-+second cases. Once a task is descheduled, it is put back on the queue, and an
-+O(n) lookup of all queued-but-not-running tasks is done to determine which has
-+the earliest deadline and that task is chosen to receive CPU next.
-+
-+The CPU proportion of different nice tasks works out to be approximately the
-+
-+ (prio_ratio difference)^2
-+
-+The reason it is squared is that a task's deadline does not change while it is
-+running unless it runs out of time_slice. Thus, even if the time actually
-+passes the deadline of another task that is queued, it will not get CPU time
-+unless the current running task deschedules, and the time "base" (jiffies) is
-+constantly moving.
-+
-+Task lookup.
-+
-+BFS has 103 priority queues. 100 of these are dedicated to the static priority
-+of realtime tasks, and the remaining 3 are, in order of best to worst priority,
-+SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority
-+scheduling). When a task of these priorities is queued, a bitmap of running
-+priorities is set showing which of these priorities has tasks waiting for CPU
-+time. When a CPU is made to reschedule, the lookup for the next task to get
-+CPU time is performed in the following way:
-+
-+First the bitmap is checked to see what static priority tasks are queued. If
-+any realtime priorities are found, the corresponding queue is checked and the
-+first task listed there is taken (provided CPU affinity is suitable) and lookup
-+is complete. If the priority corresponds to a SCHED_ISO task, they are also
-+taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds
-+to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this
-+stage, every task in the runlist that corresponds to that priority is checked
-+to see which has the earliest set deadline, and (provided it has suitable CPU
-+affinity) it is taken off the runqueue and given the CPU. If a task has an
-+expired deadline, it is taken and the rest of the lookup aborted (as they are
-+chosen in FIFO order).
-+
-+Thus, the lookup is O(n) in the worst case only, where n is as described
-+earlier, as tasks may be chosen before the whole task list is looked over.
-+
-+
-+Scalability.
-+
-+The major limitations of BFS will be that of scalability, as the separate
-+runqueue designs will have less lock contention as the number of CPUs rises.
-+However they do not scale linearly even with separate runqueues as multiple
-+runqueues will need to be locked concurrently on such designs to be able to
-+achieve fair CPU balancing, to try and achieve some sort of nice-level fairness
-+across CPUs, and to achieve low enough latency for tasks on a busy CPU when
-+other CPUs would be more suited. BFS has the advantage that it requires no
-+balancing algorithm whatsoever, as balancing occurs by proxy simply because
-+all CPUs draw off the global runqueue, in priority and deadline order. Despite
-+the fact that scalability is _not_ the prime concern of BFS, it both shows very
-+good scalability to smaller numbers of CPUs and is likely a more scalable design
-+at these numbers of CPUs.
-+
-+It also has some very low overhead scalability features built into the design
-+when it has been deemed their overhead is so marginal that they're worth adding.
-+The first is the local copy of the running process' data to the CPU it's running
-+on to allow that data to be updated lockless where possible. Then there is
-+deference paid to the last CPU a task was running on, by trying that CPU first
-+when looking for an idle CPU to use the next time it's scheduled. Finally there
-+is the notion of cache locality beyond the last running CPU. The sched_domains
-+information is used to determine the relative virtual "cache distance" that
-+other CPUs have from the last CPU a task was running on. CPUs with shared
-+caches, such as SMT siblings, or multicore CPUs with shared caches, are treated
-+as cache local. CPUs without shared caches are treated as not cache local, and
-+CPUs on different NUMA nodes are treated as very distant. This "relative cache
-+distance" is used by modifying the virtual deadline value when doing lookups.
-+Effectively, the deadline is unaltered between "cache local" CPUs, doubled for
-+"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning
-+behind the doubling of deadlines is as follows. The real cost of migrating a
-+task from one CPU to another is entirely dependant on the cache footprint of
-+the task, how cache intensive the task is, how long it's been running on that
-+CPU to take up the bulk of its cache, how big the CPU cache is, how fast and
-+how layered the CPU cache is, how fast a context switch is... and so on. In
-+other words, it's close to random in the real world where we do more than just
-+one sole workload. The only thing we can be sure of is that it's not free. So
-+BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs
-+is more important than cache locality, and cache locality only plays a part
-+after that. Doubling the effective deadline is based on the premise that the
-+"cache local" CPUs will tend to work on the same tasks up to double the number
-+of cache local CPUs, and once the workload is beyond that amount, it is likely
-+that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA
-+is a value I pulled out of my arse.
-+
-+When choosing an idle CPU for a waking task, the cache locality is determined
-+according to where the task last ran and then idle CPUs are ranked from best
-+to worst to choose the most suitable idle CPU based on cache locality, NUMA
-+node locality and hyperthread sibling business. They are chosen in the
-+following preference (if idle):
-+
-+* Same core, idle or busy cache, idle threads
-+* Other core, same cache, idle or busy cache, idle threads.
-+* Same node, other CPU, idle cache, idle threads.
-+* Same node, other CPU, busy cache, idle threads.
-+* Same core, busy threads.
-+* Other core, same cache, busy threads.
-+* Same node, other CPU, busy threads.
-+* Other node, other CPU, idle cache, idle threads.
-+* Other node, other CPU, busy cache, idle threads.
-+* Other node, other CPU, busy threads.
-+
-+This shows the SMT or "hyperthread" awareness in the design as well which will
-+choose a real idle core first before a logical SMT sibling which already has
-+tasks on the physical CPU.
-+
-+Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark.
-+However this benchmarking was performed on an earlier design that was far less
-+scalable than the current one so it's hard to know how scalable it is in terms
-+of both CPUs (due to the global runqueue) and heavily loaded machines (due to
-+O(n) lookup) at this stage. Note that in terms of scalability, the number of
-+_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x)
-+quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark
-+results are very promising indeed, without needing to tweak any knobs, features
-+or options. Benchmark contributions are most welcome.
-+
-+
-+Features
-+
-+As the initial prime target audience for BFS was the average desktop user, it
-+was designed to not need tweaking, tuning or have features set to obtain benefit
-+from it. Thus the number of knobs and features has been kept to an absolute
-+minimum and should not require extra user input for the vast majority of cases.
-+There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval
-+and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition
-+to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is
-+support for CGROUPS. The average user should neither need to know what these
-+are, nor should they need to be using them to have good desktop behaviour.
-+
-+rr_interval
-+
-+There is only one "scheduler" tunable, the round robin interval. This can be
-+accessed in
-+
-+ /proc/sys/kernel/rr_interval
-+
-+The value is in milliseconds, and the default value is set to 6 on a
-+uniprocessor machine, and automatically set to a progressively higher value on
-+multiprocessor machines. The reasoning behind increasing the value on more CPUs
-+is that the effective latency is decreased by virtue of there being more CPUs on
-+BFS (for reasons explained above), and increasing the value allows for less
-+cache contention and more throughput. Valid values are from 1 to 1000
-+Decreasing the value will decrease latencies at the cost of decreasing
-+throughput, while increasing it will improve throughput, but at the cost of
-+worsening latencies. The accuracy of the rr interval is limited by HZ resolution
-+of the kernel configuration. Thus, the worst case latencies are usually slightly
-+higher than this actual value. The default value of 6 is not an arbitrary one.
-+It is based on the fact that humans can detect jitter at approximately 7ms, so
-+aiming for much lower latencies is pointless under most circumstances. It is
-+worth noting this fact when comparing the latency performance of BFS to other
-+schedulers. Worst case latencies being higher than 7ms are far worse than
-+average latencies not being in the microsecond range.
-+
-+Isochronous scheduling.
-+
-+Isochronous scheduling is a unique scheduling policy designed to provide
-+near-real-time performance to unprivileged (ie non-root) users without the
-+ability to starve the machine indefinitely. Isochronous tasks (which means
-+"same time") are set using, for example, the schedtool application like so:
-+
-+ schedtool -I -e amarok
-+
-+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
-+is that it has a priority level between true realtime tasks and SCHED_NORMAL
-+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
-+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
-+rate). However if ISO tasks run for more than a tunable finite amount of time,
-+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
-+time is the percentage of _total CPU_ available across the machine, configurable
-+as a percentage in the following "resource handling" tunable (as opposed to a
-+scheduler tunable):
-+
-+ /proc/sys/kernel/iso_cpu
-+
-+and is set to 70% by default. It is calculated over a rolling 5 second average
-+Because it is the total CPU available, it means that on a multi CPU machine, it
-+is possible to have an ISO task running as realtime scheduling indefinitely on
-+just one CPU, as the other CPUs will be available. Setting this to 100 is the
-+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
-+ability to run any pseudo-realtime tasks.
-+
-+A feature of BFS is that it detects when an application tries to obtain a
-+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
-+appropriate privileges to use those policies. When it detects this, it will
-+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
-+Because some applications constantly set their policy as well as their nice
-+level, there is potential for them to undo the override specified by the user
-+on the command line of setting the policy to SCHED_ISO. To counter this, once
-+a task has been set to SCHED_ISO policy, it needs superuser privileges to set
-+it back to SCHED_NORMAL. This will ensure the task remains ISO and all child
-+processes and threads will also inherit the ISO policy.
-+
-+Idleprio scheduling.
-+
-+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
-+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
-+ultra low priority tasks to be run in the background that have virtually no
-+effect on the foreground tasks. This is ideally suited to distributed computing
-+clients (like setiathome, folding, mprime etc) but can also be used to start
-+a video encode or so on without any slowdown of other tasks. To avoid this
-+policy from grabbing shared resources and holding them indefinitely, if it
-+detects a state where the task is waiting on I/O, the machine is about to
-+suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As
-+per the Isochronous task management, once a task has been scheduled as IDLEPRIO,
-+it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can
-+be set to start as SCHED_IDLEPRIO with the schedtool command like so:
-+
-+ schedtool -D -e ./mprime
-+
-+Subtick accounting.
-+
-+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
-+the accounting is done by simply determining what is happening at the precise
-+moment a timer tick fires off. This becomes increasingly inaccurate as the
-+timer tick frequency (HZ) is lowered. It is possible to create an application
-+which uses almost 100% CPU, yet by being descheduled at the right time, records
-+zero CPU usage. While the main problem with this is that there are possible
-+security implications, it is also difficult to determine how much CPU a task
-+really does use. BFS tries to use the sub-tick accounting from the TSC clock,
-+where possible, to determine real CPU usage. This is not entirely reliable, but
-+is far more likely to produce accurate CPU usage data than the existing designs
-+and will not show tasks as consuming no CPU usage when they actually are. Thus,
-+the amount of CPU reported as being used by BFS will more accurately represent
-+how much CPU the task itself is using (as is shown for example by the 'time'
-+application), so the reported values may be quite different to other schedulers.
-+Values reported as the 'load' are more prone to problems with this design, but
-+per process values are closer to real usage. When comparing throughput of BFS
-+to other designs, it is important to compare the actual completed work in terms
-+of total wall clock time taken and total work done, rather than the reported
-+"cpu usage".
-+
-+
-+Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010
-Index: linux-2.6.37-ck2/Documentation/sysctl/kernel.txt
-===================================================================
---- linux-2.6.37-ck2.orig/Documentation/sysctl/kernel.txt 2011-01-06 14:04:07.000000000 +1100
-+++ linux-2.6.37-ck2/Documentation/sysctl/kernel.txt 2011-02-14 09:47:50.984252001 +1100
-@@ -32,6 +32,7 @@
- - domainname
- - hostname
- - hotplug
-+- iso_cpu
- - java-appletviewer [ binfmt_java, obsolete ]
- - java-interpreter [ binfmt_java, obsolete ]
- - kstack_depth_to_print [ X86 only ]
-@@ -54,6 +55,7 @@
- - randomize_va_space
- - real-root-dev ==> Documentation/initrd.txt
- - reboot-cmd [ SPARC only ]
-+- rr_interval
- - rtsig-max
- - rtsig-nr
- - sem
-@@ -254,6 +256,16 @@
-
- ==============================================================
-
-+iso_cpu: (BFS CPU scheduler only).
-+
-+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
-+run effectively at realtime priority, averaged over a rolling five
-+seconds over the -whole- system, meaning all cpus.
-+
-+Set to 70 (percent) by default.
-+
-+==============================================================
-+
- l2cr: (PPC only)
-
- This flag controls the L2 cache of G3 processor boards. If
-@@ -428,6 +440,20 @@
-
- ==============================================================
-
-+rr_interval: (BFS CPU scheduler only)
-+
-+This is the smallest duration that any cpu process scheduling unit
-+will run for. Increasing this value can increase throughput of cpu
-+bound tasks substantially but at the expense of increased latencies
-+overall. Conversely decreasing it will decrease average and maximum
-+latencies but at the expense of throughput. This value is in
-+milliseconds and the default value chosen depends on the number of
-+cpus available at scheduler initialisation with a minimum of 6.
-+
-+Valid values are from 1-1000.
-+
-+==============================================================
-+
- rtsig-max & rtsig-nr:
-
- The file rtsig-max can be used to tune the maximum number
-Index: linux-2.6.37-ck2/fs/proc/base.c
-===================================================================
---- linux-2.6.37-ck2.orig/fs/proc/base.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/fs/proc/base.c 2011-02-14 09:47:50.986252000 +1100
-@@ -356,7 +356,7 @@
- static int proc_pid_schedstat(struct task_struct *task, char *buffer)
- {
- return sprintf(buffer, "%llu %llu %lu\n",
-- (unsigned long long)task->se.sum_exec_runtime,
-+ (unsigned long long)tsk_seruntime(task),
- (unsigned long long)task->sched_info.run_delay,
- task->sched_info.pcount);
- }
-Index: linux-2.6.37-ck2/include/linux/init_task.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/init_task.h 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/include/linux/init_task.h 2011-02-14 09:47:50.986252001 +1100
-@@ -114,6 +114,67 @@
- * INIT_TASK is used to set up the first task table, touch at
- * your own risk!. Base=0, limit=0x1fffff (=2MB)
- */
-+#ifdef CONFIG_SCHED_BFS
-+#define INIT_TASK(tsk) \
-+{ \
-+ .state = 0, \
-+ .stack = &init_thread_info, \
-+ .usage = ATOMIC_INIT(2), \
-+ .flags = PF_KTHREAD, \
-+ .lock_depth = -1, \
-+ .prio = NORMAL_PRIO, \
-+ .static_prio = MAX_PRIO-20, \
-+ .normal_prio = NORMAL_PRIO, \
-+ .deadline = 0, \
-+ .policy = SCHED_NORMAL, \
-+ .cpus_allowed = CPU_MASK_ALL, \
-+ .mm = NULL, \
-+ .active_mm = &init_mm, \
-+ .run_list = LIST_HEAD_INIT(tsk.run_list), \
-+ .time_slice = HZ, \
-+ .tasks = LIST_HEAD_INIT(tsk.tasks), \
-+ .pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \
-+ .ptraced = LIST_HEAD_INIT(tsk.ptraced), \
-+ .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \
-+ .real_parent = &tsk, \
-+ .parent = &tsk, \
-+ .children = LIST_HEAD_INIT(tsk.children), \
-+ .sibling = LIST_HEAD_INIT(tsk.sibling), \
-+ .group_leader = &tsk, \
-+ RCU_INIT_POINTER(.real_cred, &init_cred), \
-+ RCU_INIT_POINTER(.cred, &init_cred), \
-+ .comm = "swapper", \
-+ .thread = INIT_THREAD, \
-+ .fs = &init_fs, \
-+ .files = &init_files, \
-+ .signal = &init_signals, \
-+ .sighand = &init_sighand, \
-+ .nsproxy = &init_nsproxy, \
-+ .pending = { \
-+ .list = LIST_HEAD_INIT(tsk.pending.list), \
-+ .signal = {{0}}}, \
-+ .blocked = {{0}}, \
-+ .alloc_lock = __SPIN_LOCK_UNLOCKED(tsk.alloc_lock), \
-+ .journal_info = NULL, \
-+ .cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \
-+ .fs_excl = ATOMIC_INIT(0), \
-+ .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock), \
-+ .timer_slack_ns = 50000, /* 50 usec default slack */ \
-+ .pids = { \
-+ [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \
-+ [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \
-+ [PIDTYPE_SID] = INIT_PID_LINK(PIDTYPE_SID), \
-+ }, \
-+ .dirties = INIT_PROP_LOCAL_SINGLE(dirties), \
-+ INIT_IDS \
-+ INIT_PERF_EVENTS(tsk) \
-+ INIT_TRACE_IRQFLAGS \
-+ INIT_LOCKDEP \
-+ INIT_FTRACE_GRAPH \
-+ INIT_TRACE_RECURSION \
-+ INIT_TASK_RCU_PREEMPT(tsk) \
-+}
-+#else /* CONFIG_SCHED_BFS */
- #define INIT_TASK(tsk) \
- { \
- .state = 0, \
-@@ -179,7 +240,7 @@
- INIT_TRACE_RECURSION \
- INIT_TASK_RCU_PREEMPT(tsk) \
- }
--
-+#endif /* CONFIG_SCHED_BFS */
-
- #define INIT_CPU_TIMERS(cpu_timers) \
- { \
-Index: linux-2.6.37-ck2/include/linux/ioprio.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/ioprio.h 2009-06-10 13:05:27.000000000 +1000
-+++ linux-2.6.37-ck2/include/linux/ioprio.h 2011-02-14 09:47:50.986252001 +1100
-@@ -64,6 +64,8 @@
-
- static inline int task_nice_ioprio(struct task_struct *task)
- {
-+ if (iso_task(task))
-+ return 0;
- return (task_nice(task) + 20) / 5;
- }
-
-Index: linux-2.6.37-ck2/include/linux/sched.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/sched.h 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/include/linux/sched.h 2011-02-14 10:11:01.691252000 +1100
-@@ -36,8 +36,15 @@
- #define SCHED_FIFO 1
- #define SCHED_RR 2
- #define SCHED_BATCH 3
--/* SCHED_ISO: reserved but not implemented yet */
-+/* SCHED_ISO: Implemented on BFS only */
- #define SCHED_IDLE 5
-+#define SCHED_IDLEPRIO SCHED_IDLE
-+#ifdef CONFIG_SCHED_BFS
-+#define SCHED_ISO 4
-+#define SCHED_MAX (SCHED_IDLEPRIO)
-+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX)
-+#endif
-+
- /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
- #define SCHED_RESET_ON_FORK 0x40000000
-
-@@ -268,8 +275,6 @@
- extern void init_idle(struct task_struct *idle, int cpu);
- extern void init_idle_bootup_task(struct task_struct *idle);
-
--extern int runqueue_is_locked(int cpu);
--
- extern cpumask_var_t nohz_cpu_mask;
- #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
- extern void select_nohz_load_balancer(int stop_tick);
-@@ -1188,17 +1193,31 @@
-
- int lock_depth; /* BKL lock depth */
-
-+#ifndef CONFIG_SCHED_BFS
- #ifdef CONFIG_SMP
- #ifdef __ARCH_WANT_UNLOCKED_CTXSW
- int oncpu;
- #endif
- #endif
-+#else /* CONFIG_SCHED_BFS */
-+ int oncpu;
-+#endif
-
- int prio, static_prio, normal_prio;
- unsigned int rt_priority;
-+#ifdef CONFIG_SCHED_BFS
-+ int time_slice;
-+ u64 deadline;
-+ struct list_head run_list;
-+ u64 last_ran;
-+ u64 sched_time; /* sched_clock time spent running */
-+
-+ unsigned long rt_timeout;
-+#else /* CONFIG_SCHED_BFS */
- const struct sched_class *sched_class;
- struct sched_entity se;
- struct sched_rt_entity rt;
-+#endif
-
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- /* list of struct preempt_notifier: */
-@@ -1295,6 +1314,9 @@
- int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
-
- cputime_t utime, stime, utimescaled, stimescaled;
-+#ifdef CONFIG_SCHED_BFS
-+ unsigned long utime_pc, stime_pc;
-+#endif
- cputime_t gtime;
- #ifndef CONFIG_VIRT_CPU_ACCOUNTING
- cputime_t prev_utime, prev_stime;
-@@ -1514,6 +1536,60 @@
- #endif
- };
-
-+#ifdef CONFIG_SCHED_BFS
-+extern int grunqueue_is_locked(void);
-+extern void grq_unlock_wait(void);
-+#define tsk_seruntime(t) ((t)->sched_time)
-+#define tsk_rttimeout(t) ((t)->rt_timeout)
-+
-+static inline void tsk_cpus_current(struct task_struct *p)
-+{
-+}
-+
-+#define runqueue_is_locked(cpu) grunqueue_is_locked()
-+
-+static inline void print_scheduler_version(void)
-+{
-+ printk(KERN_INFO"BFS CPU scheduler v0.363 by Con Kolivas.\n");
-+}
-+
-+static inline int iso_task(struct task_struct *p)
-+{
-+ return (p->policy == SCHED_ISO);
-+}
-+extern void remove_cpu(unsigned long cpu);
-+extern int above_background_load(void);
-+#else /* CFS */
-+extern int runqueue_is_locked(int cpu);
-+#define tsk_seruntime(t) ((t)->se.sum_exec_runtime)
-+#define tsk_rttimeout(t) ((t)->rt.timeout)
-+
-+static inline void tsk_cpus_current(struct task_struct *p)
-+{
-+ p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
-+}
-+
-+static inline void print_scheduler_version(void)
-+{
-+ printk(KERN_INFO"CFS CPU scheduler.\n");
-+}
-+
-+static inline int iso_task(struct task_struct *p)
-+{
-+ return 0;
-+}
-+
-+static inline void remove_cpu(unsigned long cpu)
-+{
-+}
-+
-+/* Anyone feel like implementing this? */
-+static inline int above_background_load(void)
-+{
-+ return 1;
-+}
-+#endif /* CONFIG_SCHED_BFS */
-+
- /* Future-safe accessor for struct task_struct's cpus_allowed. */
- #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
-
-@@ -1531,10 +1607,20 @@
- */
-
- #define MAX_USER_RT_PRIO 100
--#define MAX_RT_PRIO MAX_USER_RT_PRIO
-+#define MAX_RT_PRIO (MAX_USER_RT_PRIO + 1)
-+#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
-
-+#ifdef CONFIG_SCHED_BFS
-+#define PRIO_RANGE (40)
-+#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE)
-+#define ISO_PRIO (MAX_RT_PRIO)
-+#define NORMAL_PRIO (MAX_RT_PRIO + 1)
-+#define IDLE_PRIO (MAX_RT_PRIO + 2)
-+#define PRIO_LIMIT ((IDLE_PRIO) + 1)
-+#else /* CONFIG_SCHED_BFS */
- #define MAX_PRIO (MAX_RT_PRIO + 40)
--#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
-+#define NORMAL_PRIO DEFAULT_PRIO
-+#endif /* CONFIG_SCHED_BFS */
-
- static inline int rt_prio(int prio)
- {
-@@ -1862,7 +1948,7 @@
- extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
-
- /* sched_exec is called by processes performing an exec */
--#ifdef CONFIG_SMP
-+#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_BFS)
- extern void sched_exec(void);
- #else
- #define sched_exec() {}
-Index: linux-2.6.37-ck2/init/Kconfig
-===================================================================
---- linux-2.6.37-ck2.orig/init/Kconfig 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/init/Kconfig 2011-02-14 09:47:50.988252001 +1100
-@@ -30,6 +30,19 @@
-
- menu "General setup"
-
-+config SCHED_BFS
-+ bool "BFS cpu scheduler"
-+ ---help---
-+ The Brain Fuck CPU Scheduler for excellent interactivity and
-+ responsiveness on the desktop and solid scalability on normal
-+ hardware. Not recommended for 4096 CPUs.
-+
-+ Currently incompatible with the Group CPU scheduler, and RCU TORTURE
-+ TEST so these options are disabled.
-+
-+ Say Y here.
-+ default y
-+
- config EXPERIMENTAL
- bool "Prompt for development and/or incomplete code/drivers"
- ---help---
-@@ -563,6 +576,7 @@
-
- config CGROUP_CPUACCT
- bool "Simple CPU accounting cgroup subsystem"
-+ depends on !SCHED_BFS
- help
- Provides a simple Resource Controller for monitoring the
- total CPU consumed by the tasks in a cgroup.
-@@ -629,7 +643,7 @@
-
- menuconfig CGROUP_SCHED
- bool "Group CPU scheduler"
-- depends on EXPERIMENTAL
-+ depends on EXPERIMENTAL && !SCHED_BFS
- default n
- help
- This feature lets CPU scheduler recognize task groups and control CPU
-Index: linux-2.6.37-ck2/init/main.c
-===================================================================
---- linux-2.6.37-ck2.orig/init/main.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/init/main.c 2011-02-14 09:47:50.989252001 +1100
-@@ -824,6 +824,7 @@
- system_state = SYSTEM_RUNNING;
- numa_default_policy();
-
-+ print_scheduler_version();
-
- current->signal->flags |= SIGNAL_UNKILLABLE;
-
-Index: linux-2.6.37-ck2/kernel/delayacct.c
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/delayacct.c 2009-12-03 21:40:09.000000000 +1100
-+++ linux-2.6.37-ck2/kernel/delayacct.c 2011-02-14 09:47:50.989252001 +1100
-@@ -128,7 +128,7 @@
- */
- t1 = tsk->sched_info.pcount;
- t2 = tsk->sched_info.run_delay;
-- t3 = tsk->se.sum_exec_runtime;
-+ t3 = tsk_seruntime(tsk);
-
- d->cpu_count += t1;
-
-Index: linux-2.6.37-ck2/kernel/exit.c
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/exit.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/kernel/exit.c 2011-02-14 09:47:50.989252001 +1100
-@@ -132,7 +132,7 @@
- sig->inblock += task_io_get_inblock(tsk);
- sig->oublock += task_io_get_oublock(tsk);
- task_io_accounting_add(&sig->ioac, &tsk->ioac);
-- sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
-+ sig->sum_sched_runtime += tsk_seruntime(tsk);
- }
-
- sig->nr_threads--;
-Index: linux-2.6.37-ck2/kernel/kthread.c
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/kthread.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/kernel/kthread.c 2011-02-14 09:47:50.989252001 +1100
-@@ -184,7 +184,9 @@
- }
-
- p->cpus_allowed = cpumask_of_cpu(cpu);
-+#ifndef CONFIG_SCHED_BFS
- p->rt.nr_cpus_allowed = 1;
-+#endif
- p->flags |= PF_THREAD_BOUND;
- }
- EXPORT_SYMBOL(kthread_bind);
-Index: linux-2.6.37-ck2/kernel/posix-cpu-timers.c
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/posix-cpu-timers.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/kernel/posix-cpu-timers.c 2011-02-14 09:47:50.990252001 +1100
-@@ -248,7 +248,7 @@
- do {
- times->utime = cputime_add(times->utime, t->utime);
- times->stime = cputime_add(times->stime, t->stime);
-- times->sum_exec_runtime += t->se.sum_exec_runtime;
-+ times->sum_exec_runtime += tsk_seruntime(t);
- } while_each_thread(tsk, t);
- out:
- rcu_read_unlock();
-@@ -508,7 +508,7 @@
- void posix_cpu_timers_exit(struct task_struct *tsk)
- {
- cleanup_timers(tsk->cpu_timers,
-- tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
-+ tsk->utime, tsk->stime, tsk_seruntime(tsk));
-
- }
- void posix_cpu_timers_exit_group(struct task_struct *tsk)
-@@ -518,7 +518,7 @@
- cleanup_timers(tsk->signal->cpu_timers,
- cputime_add(tsk->utime, sig->utime),
- cputime_add(tsk->stime, sig->stime),
-- tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
-+ tsk_seruntime(tsk) + sig->sum_sched_runtime);
- }
-
- static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
-@@ -949,7 +949,7 @@
- struct cpu_timer_list *t = list_first_entry(timers,
- struct cpu_timer_list,
- entry);
-- if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
-+ if (!--maxfire || tsk_seruntime(tsk) < t->expires.sched) {
- tsk->cputime_expires.sched_exp = t->expires.sched;
- break;
- }
-@@ -966,7 +966,7 @@
- ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
-
- if (hard != RLIM_INFINITY &&
-- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
-+ tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
- /*
- * At the hard limit, we just die.
- * No need to calculate anything else now.
-@@ -974,7 +974,7 @@
- __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
- return;
- }
-- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
-+ if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
- /*
- * At the soft limit, send a SIGXCPU every second.
- */
-@@ -1276,7 +1276,7 @@
- struct task_cputime task_sample = {
- .utime = tsk->utime,
- .stime = tsk->stime,
-- .sum_exec_runtime = tsk->se.sum_exec_runtime
-+ .sum_exec_runtime = tsk_seruntime(tsk)
- };
-
- if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
-Index: linux-2.6.37-ck2/kernel/sched_bfs.c
-===================================================================
---- /dev/null 1970-01-01 00:00:00.000000000 +0000
-+++ linux-2.6.37-ck2/kernel/sched_bfs.c 2011-02-14 10:11:00.294252001 +1100
-@@ -0,0 +1,7243 @@
-+/*
-+ * kernel/sched_bfs.c, was sched.c
-+ *
-+ * Kernel scheduler and related syscalls
-+ *
-+ * Copyright (C) 1991-2002 Linus Torvalds
-+ *
-+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
-+ * make semaphores SMP safe
-+ * 1998-11-19 Implemented schedule_timeout() and related stuff
-+ * by Andrea Arcangeli
-+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
-+ * hybrid priority-list and round-robin design with
-+ * an array-switch method of distributing timeslices
-+ * and per-CPU runqueues. Cleanups and useful suggestions
-+ * by Davide Libenzi, preemptible kernel bits by Robert Love.
-+ * 2003-09-03 Interactivity tuning by Con Kolivas.
-+ * 2004-04-02 Scheduler domains code by Nick Piggin
-+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
-+ * fair scheduling design by Con Kolivas.
-+ * 2007-05-05 Load balancing (smp-nice) and other improvements
-+ * by Peter Williams
-+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
-+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
-+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
-+ * Thomas Gleixner, Mike Kravetz
-+ * now Brainfuck deadline scheduling policy by Con Kolivas deletes
-+ * a whole lot of those previous things.
-+ */
-+
-+#include <linux/mm.h>
-+#include <linux/module.h>
-+#include <linux/nmi.h>
-+#include <linux/init.h>
-+#include <asm/uaccess.h>
-+#include <linux/highmem.h>
-+#include <linux/smp_lock.h>
-+#include <asm/mmu_context.h>
-+#include <linux/interrupt.h>
-+#include <linux/capability.h>
-+#include <linux/completion.h>
-+#include <linux/kernel_stat.h>
-+#include <linux/debug_locks.h>
-+#include <linux/perf_event.h>
-+#include <linux/security.h>
-+#include <linux/notifier.h>
-+#include <linux/profile.h>
-+#include <linux/freezer.h>
-+#include <linux/vmalloc.h>
-+#include <linux/blkdev.h>
-+#include <linux/delay.h>
-+#include <linux/smp.h>
-+#include <linux/threads.h>
-+#include <linux/timer.h>
-+#include <linux/rcupdate.h>
-+#include <linux/cpu.h>
-+#include <linux/cpuset.h>
-+#include <linux/cpumask.h>
-+#include <linux/percpu.h>
-+#include <linux/proc_fs.h>
-+#include <linux/seq_file.h>
-+#include <linux/syscalls.h>
-+#include <linux/times.h>
-+#include <linux/tsacct_kern.h>
-+#include <linux/kprobes.h>
-+#include <linux/delayacct.h>
-+#include <linux/log2.h>
-+#include <linux/bootmem.h>
-+#include <linux/ftrace.h>
-+#include <linux/slab.h>
-+
-+#include <asm/tlb.h>
-+#include <asm/unistd.h>
-+
-+#include "sched_cpupri.h"
-+#include "workqueue_sched.h"
-+
-+#define CREATE_TRACE_POINTS
-+#include <trace/events/sched.h>
-+
-+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
-+#define rt_task(p) rt_prio((p)->prio)
-+#define rt_queue(rq) rt_prio((rq)->rq_prio)
-+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
-+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
-+ (policy) == SCHED_RR)
-+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
-+#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLEPRIO)
-+#define iso_task(p) unlikely((p)->policy == SCHED_ISO)
-+#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO)
-+#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1)
-+
-+/*
-+ * Convert user-nice values [ -20 ... 0 ... 19 ]
-+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
-+ * and back.
-+ */
-+#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
-+#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
-+#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
-+
-+/*
-+ * 'User priority' is the nice value converted to something we
-+ * can work with better when scaling various scheduler parameters,
-+ * it's a [ 0 ... 39 ] range.
-+ */
-+#define USER_PRIO(p) ((p) - MAX_RT_PRIO)
-+#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
-+#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
-+#define SCHED_PRIO(p) ((p) + MAX_RT_PRIO)
-+#define STOP_PRIO (MAX_RT_PRIO - 1)
-+
-+/*
-+ * Some helpers for converting to/from various scales. Use shifts to get
-+ * approximate multiples of ten for less overhead.
-+ */
-+#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
-+#define JIFFY_NS (1000000000 / HZ)
-+#define HALF_JIFFY_NS (1000000000 / HZ / 2)
-+#define HALF_JIFFY_US (1000000 / HZ / 2)
-+#define MS_TO_NS(TIME) ((TIME) << 20)
-+#define MS_TO_US(TIME) ((TIME) << 10)
-+#define NS_TO_MS(TIME) ((TIME) >> 20)
-+#define NS_TO_US(TIME) ((TIME) >> 10)
-+
-+#define RESCHED_US (100) /* Reschedule if less than this many μs left */
-+
-+/*
-+ * This is the time all tasks within the same priority round robin.
-+ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus.
-+ * Tunable via /proc interface.
-+ */
-+int rr_interval __read_mostly = 6;
-+
-+/*
-+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
-+ * are allowed to run five seconds as real time tasks. This is the total over
-+ * all online cpus.
-+ */
-+int sched_iso_cpu __read_mostly = 70;
-+
-+/*
-+ * The relative length of deadline for each priority(nice) level.
-+ */
-+static int prio_ratios[PRIO_RANGE] __read_mostly;
-+
-+/*
-+ * The quota handed out to tasks of all priority levels when refilling their
-+ * time_slice.
-+ */
-+static inline unsigned long timeslice(void)
-+{
-+ return MS_TO_US(rr_interval);
-+}
-+
-+/*
-+ * The global runqueue data that all CPUs work off. Data is protected either
-+ * by the global grq lock, or the discrete lock that precedes the data in this
-+ * struct.
-+ */
-+struct global_rq {
-+ raw_spinlock_t lock;
-+ unsigned long nr_running;
-+ unsigned long nr_uninterruptible;
-+ unsigned long long nr_switches;
-+ struct list_head queue[PRIO_LIMIT];
-+ DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1);
-+#ifdef CONFIG_SMP
-+ unsigned long qnr; /* queued not running */
-+ cpumask_t cpu_idle_map;
-+ int idle_cpus;
-+#endif
-+ u64 niffies; /* Nanosecond jiffies */
-+ unsigned long last_jiffy; /* Last jiffy we updated niffies */
-+
-+ raw_spinlock_t iso_lock;
-+ int iso_ticks;
-+ int iso_refractory;
-+};
-+
-+/* There can be only one */
-+static struct global_rq grq;
-+
-+/*
-+ * This is the main, per-CPU runqueue data structure.
-+ * This data should only be modified by the local cpu.
-+ */
-+struct rq {
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_NO_HZ
-+ u64 nohz_stamp;
-+ unsigned char in_nohz_recently;
-+#endif
-+#endif
-+
-+ struct task_struct *curr, *idle, *stop;
-+ struct mm_struct *prev_mm;
-+
-+ /* Stored data about rq->curr to work outside grq lock */
-+ u64 rq_deadline;
-+ unsigned int rq_policy;
-+ int rq_time_slice;
-+ u64 rq_last_ran;
-+ int rq_prio;
-+ int rq_running; /* There is a task running */
-+
-+ /* Accurate timekeeping data */
-+ u64 timekeep_clock;
-+ unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc,
-+ iowait_pc, idle_pc;
-+ atomic_t nr_iowait;
-+
-+#ifdef CONFIG_SMP
-+ int cpu; /* cpu of this runqueue */
-+ int online;
-+
-+ struct root_domain *rd;
-+ struct sched_domain *sd;
-+ unsigned long *cpu_locality; /* CPU relative cache distance */
-+#ifdef CONFIG_SCHED_SMT
-+ int (*siblings_idle)(unsigned long cpu);
-+ /* See if all smt siblings are idle */
-+ cpumask_t smt_siblings;
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ int (*cache_idle)(unsigned long cpu);
-+ /* See if all cache siblings are idle */
-+ cpumask_t cache_siblings;
-+#endif
-+ u64 last_niffy; /* Last time this RQ updated grq.niffies */
-+#endif
-+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-+ u64 prev_irq_time;
-+#endif
-+ u64 clock, old_clock, last_tick;
-+ u64 clock_task;
-+ int dither;
-+
-+#ifdef CONFIG_SCHEDSTATS
-+
-+ /* latency stats */
-+ struct sched_info rq_sched_info;
-+ unsigned long long rq_cpu_time;
-+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
-+
-+ /* sys_sched_yield() stats */
-+ unsigned int yld_count;
-+
-+ /* schedule() stats */
-+ unsigned int sched_switch;
-+ unsigned int sched_count;
-+ unsigned int sched_goidle;
-+
-+ /* try_to_wake_up() stats */
-+ unsigned int ttwu_count;
-+ unsigned int ttwu_local;
-+
-+ /* BKL stats */
-+ unsigned int bkl_count;
-+#endif
-+};
-+
-+static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
-+static DEFINE_MUTEX(sched_hotcpu_mutex);
-+
-+#ifdef CONFIG_SMP
-+/*
-+ * sched_domains_mutex serializes calls to arch_init_sched_domains,
-+ * detach_destroy_domains and partition_sched_domains.
-+ */
-+static DEFINE_MUTEX(sched_domains_mutex);
-+
-+/*
-+ * By default the system creates a single root-domain with all cpus as
-+ * members (mimicking the global state we have today).
-+ */
-+static struct root_domain def_root_domain;
-+
-+int __weak arch_sd_sibling_asym_packing(void)
-+{
-+ return 0*SD_ASYM_PACKING;
-+}
-+#endif
-+
-+/*
-+ * We add the notion of a root-domain which will be used to define per-domain
-+ * variables. Each exclusive cpuset essentially defines an island domain by
-+ * fully partitioning the member cpus from any other cpuset. Whenever a new
-+ * exclusive cpuset is created, we also create and attach a new root-domain
-+ * object.
-+ *
-+ */
-+struct root_domain {
-+ atomic_t refcount;
-+ cpumask_var_t span;
-+ cpumask_var_t online;
-+
-+ /*
-+ * The "RT overload" flag: it gets set if a CPU has more than
-+ * one runnable RT task.
-+ */
-+ cpumask_var_t rto_mask;
-+ atomic_t rto_count;
-+#ifdef CONFIG_SMP
-+ struct cpupri cpupri;
-+#endif
-+};
-+
-+#define rcu_dereference_check_sched_domain(p) \
-+ rcu_dereference_check((p), \
-+ rcu_read_lock_sched_held() || \
-+ lockdep_is_held(&sched_domains_mutex))
-+
-+/*
-+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
-+ * See detach_destroy_domains: synchronize_sched for details.
-+ *
-+ * The domain tree of any CPU may only be accessed from within
-+ * preempt-disabled sections.
-+ */
-+#define for_each_domain(cpu, __sd) \
-+ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
-+
-+static inline void update_rq_clock(struct rq *rq);
-+
-+/*
-+ * Sanity check should sched_clock return bogus values. We make sure it does
-+ * not appear to go backwards, and use jiffies to determine the maximum and
-+ * minimum it could possibly have increased, and round down to the nearest
-+ * jiffy when it falls outside this.
-+ */
-+static inline void niffy_diff(s64 *niff_diff, int jiff_diff)
-+{
-+ unsigned long min_diff, max_diff;
-+
-+ if (jiff_diff > 1)
-+ min_diff = JIFFIES_TO_NS(jiff_diff - 1);
-+ else
-+ min_diff = 1;
-+ /* Round up to the nearest tick for maximum */
-+ max_diff = JIFFIES_TO_NS(jiff_diff + 1);
-+
-+ if (unlikely(*niff_diff < min_diff || *niff_diff > max_diff))
-+ *niff_diff = min_diff;
-+}
-+
-+#ifdef CONFIG_SMP
-+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
-+#define this_rq() (&__get_cpu_var(runqueues))
-+#define task_rq(p) cpu_rq(task_cpu(p))
-+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
-+static inline int cpu_of(struct rq *rq)
-+{
-+ return rq->cpu;
-+}
-+
-+/*
-+ * Niffies are a globally increasing nanosecond counter. Whenever a runqueue
-+ * clock is updated with the grq.lock held, it is an opportunity to update the
-+ * niffies value. Any CPU can update it by adding how much its clock has
-+ * increased since it last updated niffies, minus any added niffies by other
-+ * CPUs.
-+ */
-+static inline void update_clocks(struct rq *rq)
-+{
-+ s64 ndiff;
-+ long jdiff;
-+
-+ update_rq_clock(rq);
-+ ndiff = rq->clock - rq->old_clock;
-+ /* old_clock is only updated when we are updating niffies */
-+ rq->old_clock = rq->clock;
-+ ndiff -= grq.niffies - rq->last_niffy;
-+ jdiff = jiffies - grq.last_jiffy;
-+ niffy_diff(&ndiff, jdiff);
-+ grq.last_jiffy += jdiff;
-+ grq.niffies += ndiff;
-+ rq->last_niffy = grq.niffies;
-+}
-+#else /* CONFIG_SMP */
-+static struct rq *uprq;
-+#define cpu_rq(cpu) (uprq)
-+#define this_rq() (uprq)
-+#define task_rq(p) (uprq)
-+#define cpu_curr(cpu) ((uprq)->curr)
-+static inline int cpu_of(struct rq *rq)
-+{
-+ return 0;
-+}
-+
-+static inline void update_clocks(struct rq *rq)
-+{
-+ s64 ndiff;
-+ long jdiff;
-+
-+ update_rq_clock(rq);
-+ ndiff = rq->clock - rq->old_clock;
-+ rq->old_clock = rq->clock;
-+ jdiff = jiffies - grq.last_jiffy;
-+ niffy_diff(&ndiff, jdiff);
-+ grq.last_jiffy += jdiff;
-+ grq.niffies += ndiff;
-+}
-+#endif
-+#define raw_rq() (&__raw_get_cpu_var(runqueues))
-+
-+#include "sched_stats.h"
-+
-+#ifndef prepare_arch_switch
-+# define prepare_arch_switch(next) do { } while (0)
-+#endif
-+#ifndef finish_arch_switch
-+# define finish_arch_switch(prev) do { } while (0)
-+#endif
-+
-+/*
-+ * All common locking functions performed on grq.lock. rq->clock is local to
-+ * the CPU accessing it so it can be modified just with interrupts disabled
-+ * when we're not updating niffies.
-+ * Looking up task_rq must be done under grq.lock to be safe.
-+ */
-+static void update_rq_clock_task(struct rq *rq, s64 delta);
-+
-+static inline void update_rq_clock(struct rq *rq)
-+{
-+ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
-+
-+ rq->clock += delta;
-+ update_rq_clock_task(rq, delta);
-+}
-+
-+static inline int task_running(struct task_struct *p)
-+{
-+ return p->oncpu;
-+}
-+
-+static inline void grq_lock(void)
-+ __acquires(grq.lock)
-+{
-+ raw_spin_lock(&grq.lock);
-+}
-+
-+static inline void grq_unlock(void)
-+ __releases(grq.lock)
-+{
-+ raw_spin_unlock(&grq.lock);
-+}
-+
-+static inline void grq_lock_irq(void)
-+ __acquires(grq.lock)
-+{
-+ raw_spin_lock_irq(&grq.lock);
-+}
-+
-+static inline void time_lock_grq(struct rq *rq)
-+ __acquires(grq.lock)
-+{
-+ grq_lock();
-+ update_clocks(rq);
-+}
-+
-+static inline void grq_unlock_irq(void)
-+ __releases(grq.lock)
-+{
-+ raw_spin_unlock_irq(&grq.lock);
-+}
-+
-+static inline void grq_lock_irqsave(unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ raw_spin_lock_irqsave(&grq.lock, *flags);
-+}
-+
-+static inline void grq_unlock_irqrestore(unsigned long *flags)
-+ __releases(grq.lock)
-+{
-+ raw_spin_unlock_irqrestore(&grq.lock, *flags);
-+}
-+
-+static inline struct rq
-+*task_grq_lock(struct task_struct *p, unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ grq_lock_irqsave(flags);
-+ return task_rq(p);
-+}
-+
-+static inline struct rq
-+*time_task_grq_lock(struct task_struct *p, unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ struct rq *rq = task_grq_lock(p, flags);
-+ update_clocks(rq);
-+ return rq;
-+}
-+
-+static inline struct rq *task_grq_lock_irq(struct task_struct *p)
-+ __acquires(grq.lock)
-+{
-+ grq_lock_irq();
-+ return task_rq(p);
-+}
-+
-+static inline void time_task_grq_lock_irq(struct task_struct *p)
-+ __acquires(grq.lock)
-+{
-+ struct rq *rq = task_grq_lock_irq(p);
-+ update_clocks(rq);
-+}
-+
-+static inline void task_grq_unlock_irq(void)
-+ __releases(grq.lock)
-+{
-+ grq_unlock_irq();
-+}
-+
-+static inline void task_grq_unlock(unsigned long *flags)
-+ __releases(grq.lock)
-+{
-+ grq_unlock_irqrestore(flags);
-+}
-+
-+/**
-+ * grunqueue_is_locked
-+ *
-+ * Returns true if the global runqueue is locked.
-+ * This interface allows printk to be called with the runqueue lock
-+ * held and know whether or not it is OK to wake up the klogd.
-+ */
-+inline int grunqueue_is_locked(void)
-+{
-+ return raw_spin_is_locked(&grq.lock);
-+}
-+
-+inline void grq_unlock_wait(void)
-+ __releases(grq.lock)
-+{
-+ smp_mb(); /* spin-unlock-wait is not a full memory barrier */
-+ raw_spin_unlock_wait(&grq.lock);
-+}
-+
-+static inline void time_grq_lock(struct rq *rq, unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ local_irq_save(*flags);
-+ time_lock_grq(rq);
-+}
-+
-+static inline struct rq *__task_grq_lock(struct task_struct *p)
-+ __acquires(grq.lock)
-+{
-+ grq_lock();
-+ return task_rq(p);
-+}
-+
-+static inline void __task_grq_unlock(void)
-+ __releases(grq.lock)
-+{
-+ grq_unlock();
-+}
-+
-+/*
-+ * Look for any tasks *anywhere* that are running nice 0 or better. We do
-+ * this lockless for overhead reasons since the occasional wrong result
-+ * is harmless.
-+ */
-+int above_background_load(void)
-+{
-+ struct task_struct *cpu_curr;
-+ unsigned long cpu;
-+
-+ for_each_online_cpu(cpu) {
-+ cpu_curr = cpu_rq(cpu)->curr;
-+ if (unlikely(!cpu_curr))
-+ continue;
-+ if (PRIO_TO_NICE(cpu_curr->static_prio) < 1)
-+ return 1;
-+ }
-+ return 0;
-+}
-+
-+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-+{
-+#ifdef CONFIG_DEBUG_SPINLOCK
-+ /* this is a valid case when another task releases the spinlock */
-+ grq.lock.owner = current;
-+#endif
-+ /*
-+ * If we are tracking spinlock dependencies then we have to
-+ * fix up the runqueue lock - which gets 'carried over' from
-+ * prev into current:
-+ */
-+ spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_);
-+
-+ grq_unlock_irq();
-+}
-+
-+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
-+
-+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+ grq_unlock_irq();
-+#else
-+ grq_unlock();
-+#endif
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-+{
-+ smp_wmb();
-+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+ local_irq_enable();
-+#endif
-+}
-+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
-+
-+static inline int deadline_before(u64 deadline, u64 time)
-+{
-+ return (deadline < time);
-+}
-+
-+static inline int deadline_after(u64 deadline, u64 time)
-+{
-+ return (deadline > time);
-+}
-+
-+/*
-+ * A task that is queued but not running will be on the grq run list.
-+ * A task that is not running or queued will not be on the grq run list.
-+ * A task that is currently running will have ->oncpu set but not on the
-+ * grq run list.
-+ */
-+static inline int task_queued(struct task_struct *p)
-+{
-+ return (!list_empty(&p->run_list));
-+}
-+
-+/*
-+ * Removing from the global runqueue. Enter with grq locked.
-+ */
-+static void dequeue_task(struct task_struct *p)
-+{
-+ list_del_init(&p->run_list);
-+ if (list_empty(grq.queue + p->prio))
-+ __clear_bit(p->prio, grq.prio_bitmap);
-+}
-+
-+/*
-+ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
-+ * an idle task, we ensure none of the following conditions are met.
-+ */
-+static int idleprio_suitable(struct task_struct *p)
-+{
-+ return (!freezing(p) && !signal_pending(p) &&
-+ !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)));
-+}
-+
-+/*
-+ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
-+ * that the iso_refractory flag is not set.
-+ */
-+static int isoprio_suitable(void)
-+{
-+ return !grq.iso_refractory;
-+}
-+
-+/*
-+ * Adding to the global runqueue. Enter with grq locked.
-+ */
-+static void enqueue_task(struct task_struct *p)
-+{
-+ if (!rt_task(p)) {
-+ /* Check it hasn't gotten rt from PI */
-+ if ((idleprio_task(p) && idleprio_suitable(p)) ||
-+ (iso_task(p) && isoprio_suitable()))
-+ p->prio = p->normal_prio;
-+ else
-+ p->prio = NORMAL_PRIO;
-+ }
-+ __set_bit(p->prio, grq.prio_bitmap);
-+ list_add_tail(&p->run_list, grq.queue + p->prio);
-+ sched_info_queued(p);
-+}
-+
-+/* Only idle task does this as a real time task*/
-+static inline void enqueue_task_head(struct task_struct *p)
-+{
-+ __set_bit(p->prio, grq.prio_bitmap);
-+ list_add(&p->run_list, grq.queue + p->prio);
-+ sched_info_queued(p);
-+}
-+
-+static inline void requeue_task(struct task_struct *p)
-+{
-+ sched_info_queued(p);
-+}
-+
-+/*
-+ * Returns the relative length of deadline all compared to the shortest
-+ * deadline which is that of nice -20.
-+ */
-+static inline int task_prio_ratio(struct task_struct *p)
-+{
-+ return prio_ratios[TASK_USER_PRIO(p)];
-+}
-+
-+/*
-+ * task_timeslice - all tasks of all priorities get the exact same timeslice
-+ * length. CPU distribution is handled by giving different deadlines to
-+ * tasks of different priorities. Use 128 as the base value for fast shifts.
-+ */
-+static inline int task_timeslice(struct task_struct *p)
-+{
-+ return (rr_interval * task_prio_ratio(p) / 128);
-+}
-+
-+#ifdef CONFIG_SMP
-+/*
-+ * qnr is the "queued but not running" count which is the total number of
-+ * tasks on the global runqueue list waiting for cpu time but not actually
-+ * currently running on a cpu.
-+ */
-+static inline void inc_qnr(void)
-+{
-+ grq.qnr++;
-+}
-+
-+static inline void dec_qnr(void)
-+{
-+ grq.qnr--;
-+}
-+
-+static inline int queued_notrunning(void)
-+{
-+ return grq.qnr;
-+}
-+
-+/*
-+ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
-+ * allow easy lookup of whether any suitable idle CPUs are available.
-+ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
-+ * idle_cpus variable than to do a full bitmask check when we are busy.
-+ */
-+static inline void set_cpuidle_map(unsigned long cpu)
-+{
-+ if (likely(cpu_online(cpu))) {
-+ cpu_set(cpu, grq.cpu_idle_map);
-+ grq.idle_cpus = 1;
-+ }
-+}
-+
-+static inline void clear_cpuidle_map(unsigned long cpu)
-+{
-+ cpu_clear(cpu, grq.cpu_idle_map);
-+ if (cpus_empty(grq.cpu_idle_map))
-+ grq.idle_cpus = 0;
-+}
-+
-+static int suitable_idle_cpus(struct task_struct *p)
-+{
-+ if (!grq.idle_cpus)
-+ return 0;
-+ return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map));
-+}
-+
-+static void resched_task(struct task_struct *p);
-+
-+#define CPUIDLE_DIFF_THREAD (1)
-+#define CPUIDLE_DIFF_CORE (2)
-+#define CPUIDLE_CACHE_BUSY (4)
-+#define CPUIDLE_DIFF_CPU (8)
-+#define CPUIDLE_THREAD_BUSY (16)
-+#define CPUIDLE_DIFF_NODE (32)
-+
-+/*
-+ * The best idle CPU is chosen according to the CPUIDLE ranking above where the
-+ * lowest value would give the most suitable CPU to schedule p onto next. We
-+ * iterate from the last CPU upwards instead of using for_each_cpu_mask so as
-+ * to be able to break out immediately if the last CPU is idle. The order works
-+ * out to be the following:
-+ *
-+ * Same core, idle or busy cache, idle threads
-+ * Other core, same cache, idle or busy cache, idle threads.
-+ * Same node, other CPU, idle cache, idle threads.
-+ * Same node, other CPU, busy cache, idle threads.
-+ * Same core, busy threads.
-+ * Other core, same cache, busy threads.
-+ * Same node, other CPU, busy threads.
-+ * Other node, other CPU, idle cache, idle threads.
-+ * Other node, other CPU, busy cache, idle threads.
-+ * Other node, other CPU, busy threads.
-+ *
-+ * If p was the last task running on this rq, then regardless of where
-+ * it has been running since then, it is cache warm on this rq.
-+ */
-+static void resched_best_idle(struct task_struct *p)
-+{
-+ unsigned long cpu_tmp, best_cpu, best_ranking;
-+ cpumask_t tmpmask;
-+ struct rq *rq;
-+ int iterate;
-+
-+ cpus_and(tmpmask, p->cpus_allowed, grq.cpu_idle_map);
-+ iterate = cpus_weight(tmpmask);
-+ best_cpu = task_cpu(p);
-+ /*
-+ * Start below the last CPU and work up with next_cpu as the last
-+ * CPU might not be idle or affinity might not allow it.
-+ */
-+ cpu_tmp = best_cpu - 1;
-+ rq = cpu_rq(best_cpu);
-+ best_ranking = ~0UL;
-+
-+ do {
-+ unsigned long ranking;
-+ struct rq *tmp_rq;
-+
-+ ranking = 0;
-+ cpu_tmp = next_cpu(cpu_tmp, tmpmask);
-+ if (cpu_tmp >= nr_cpu_ids) {
-+ cpu_tmp = -1;
-+ cpu_tmp = next_cpu(cpu_tmp, tmpmask);
-+ }
-+ tmp_rq = cpu_rq(cpu_tmp);
-+
-+#ifdef CONFIG_NUMA
-+ if (rq->cpu_locality[cpu_tmp] > 3)
-+ ranking |= CPUIDLE_DIFF_NODE;
-+ else
-+#endif
-+ if (rq->cpu_locality[cpu_tmp] > 2)
-+ ranking |= CPUIDLE_DIFF_CPU;
-+#ifdef CONFIG_SCHED_MC
-+ if (rq->cpu_locality[cpu_tmp] == 2)
-+ ranking |= CPUIDLE_DIFF_CORE;
-+ if (!(tmp_rq->cache_idle(cpu_tmp)))
-+ ranking |= CPUIDLE_CACHE_BUSY;
-+#endif
-+#ifdef CONFIG_SCHED_SMT
-+ if (rq->cpu_locality[cpu_tmp] == 1)
-+ ranking |= CPUIDLE_DIFF_THREAD;
-+ if (!(tmp_rq->siblings_idle(cpu_tmp)))
-+ ranking |= CPUIDLE_THREAD_BUSY;
-+#endif
-+ if (ranking < best_ranking) {
-+ best_cpu = cpu_tmp;
-+ if (ranking == 0)
-+ break;
-+ best_ranking = ranking;
-+ }
-+ } while (--iterate > 0);
-+
-+ resched_task(cpu_rq(best_cpu)->curr);
-+}
-+
-+static inline void resched_suitable_idle(struct task_struct *p)
-+{
-+ if (suitable_idle_cpus(p))
-+ resched_best_idle(p);
-+}
-+
-+/*
-+ * The cpu cache locality difference between CPUs is used to determine how far
-+ * to offset the virtual deadline. <2 difference in locality means that one
-+ * timeslice difference is allowed longer for the cpu local tasks. This is
-+ * enough in the common case when tasks are up to 2* number of CPUs to keep
-+ * tasks within their shared cache CPUs only. CPUs on different nodes or not
-+ * even in this domain (NUMA) have "4" difference, allowing 4 times longer
-+ * deadlines before being taken onto another cpu, allowing for 2* the double
-+ * seen by separate CPUs above.
-+ * Simple summary: Virtual deadlines are equal on shared cache CPUs, double
-+ * on separate CPUs and quadruple in separate NUMA nodes.
-+ */
-+static inline int
-+cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p)
-+{
-+ int locality = rq->cpu_locality[cpu_of(task_rq)] - 2;
-+
-+ if (locality > 0)
-+ return task_timeslice(p) << locality;
-+ return 0;
-+}
-+#else /* CONFIG_SMP */
-+static inline void inc_qnr(void)
-+{
-+}
-+
-+static inline void dec_qnr(void)
-+{
-+}
-+
-+static inline int queued_notrunning(void)
-+{
-+ return grq.nr_running;
-+}
-+
-+static inline void set_cpuidle_map(unsigned long cpu)
-+{
-+}
-+
-+static inline void clear_cpuidle_map(unsigned long cpu)
-+{
-+}
-+
-+static inline int suitable_idle_cpus(struct task_struct *p)
-+{
-+ return uprq->curr == uprq->idle;
-+}
-+
-+static inline void resched_suitable_idle(struct task_struct *p)
-+{
-+}
-+
-+static inline int
-+cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p)
-+{
-+ return 0;
-+}
-+#endif /* CONFIG_SMP */
-+
-+/*
-+ * activate_idle_task - move idle task to the _front_ of runqueue.
-+ */
-+static inline void activate_idle_task(struct task_struct *p)
-+{
-+ enqueue_task_head(p);
-+ grq.nr_running++;
-+ inc_qnr();
-+}
-+
-+static inline int normal_prio(struct task_struct *p)
-+{
-+ if (has_rt_policy(p))
-+ return MAX_RT_PRIO - 1 - p->rt_priority;
-+ if (idleprio_task(p))
-+ return IDLE_PRIO;
-+ if (iso_task(p))
-+ return ISO_PRIO;
-+ return NORMAL_PRIO;
-+}
-+
-+/*
-+ * Calculate the current priority, i.e. the priority
-+ * taken into account by the scheduler. This value might
-+ * be boosted by RT tasks as it will be RT if the task got
-+ * RT-boosted. If not then it returns p->normal_prio.
-+ */
-+static int effective_prio(struct task_struct *p)
-+{
-+ p->normal_prio = normal_prio(p);
-+ /*
-+ * If we are RT tasks or we were boosted to RT priority,
-+ * keep the priority unchanged. Otherwise, update priority
-+ * to the normal priority:
-+ */
-+ if (!rt_prio(p->prio))
-+ return p->normal_prio;
-+ return p->prio;
-+}
-+
-+/*
-+ * activate_task - move a task to the runqueue. Enter with grq locked.
-+ */
-+static void activate_task(struct task_struct *p, struct rq *rq)
-+{
-+ update_clocks(rq);
-+
-+ /*
-+ * Sleep time is in units of nanosecs, so shift by 20 to get a
-+ * milliseconds-range estimation of the amount of time that the task
-+ * spent sleeping:
-+ */
-+ if (unlikely(prof_on == SLEEP_PROFILING)) {
-+ if (p->state == TASK_UNINTERRUPTIBLE)
-+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
-+ (rq->clock - p->last_ran) >> 20);
-+ }
-+
-+ p->prio = effective_prio(p);
-+ if (task_contributes_to_load(p))
-+ grq.nr_uninterruptible--;
-+ enqueue_task(p);
-+ grq.nr_running++;
-+ inc_qnr();
-+}
-+
-+/*
-+ * deactivate_task - If it's running, it's not on the grq and we can just
-+ * decrement the nr_running. Enter with grq locked.
-+ */
-+static inline void deactivate_task(struct task_struct *p)
-+{
-+ if (task_contributes_to_load(p))
-+ grq.nr_uninterruptible++;
-+ grq.nr_running--;
-+}
-+
-+#ifdef CONFIG_SMP
-+void set_task_cpu(struct task_struct *p, unsigned int cpu)
-+{
-+ trace_sched_migrate_task(p, cpu);
-+ if (task_cpu(p) != cpu)
-+ perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
-+
-+ /*
-+ * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be
-+ * successfuly executed on another CPU. We must ensure that updates of
-+ * per-task data have been completed by this moment.
-+ */
-+ smp_wmb();
-+ task_thread_info(p)->cpu = cpu;
-+}
-+#endif
-+
-+/*
-+ * Move a task off the global queue and take it to a cpu for it will
-+ * become the running task.
-+ */
-+static inline void take_task(struct rq *rq, struct task_struct *p)
-+{
-+ set_task_cpu(p, cpu_of(rq));
-+ dequeue_task(p);
-+ dec_qnr();
-+}
-+
-+/*
-+ * Returns a descheduling task to the grq runqueue unless it is being
-+ * deactivated.
-+ */
-+static inline void return_task(struct task_struct *p, int deactivate)
-+{
-+ if (deactivate)
-+ deactivate_task(p);
-+ else {
-+ inc_qnr();
-+ enqueue_task(p);
-+ }
-+}
-+
-+/*
-+ * resched_task - mark a task 'to be rescheduled now'.
-+ *
-+ * On UP this means the setting of the need_resched flag, on SMP it
-+ * might also involve a cross-CPU call to trigger the scheduler on
-+ * the target CPU.
-+ */
-+#ifdef CONFIG_SMP
-+
-+#ifndef tsk_is_polling
-+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
-+#endif
-+
-+static void resched_task(struct task_struct *p)
-+{
-+ int cpu;
-+
-+ assert_raw_spin_locked(&grq.lock);
-+
-+ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
-+ return;
-+
-+ set_tsk_thread_flag(p, TIF_NEED_RESCHED);
-+
-+ cpu = task_cpu(p);
-+ if (cpu == smp_processor_id())
-+ return;
-+
-+ /* NEED_RESCHED must be visible before we test polling */
-+ smp_mb();
-+ if (!tsk_is_polling(p))
-+ smp_send_reschedule(cpu);
-+}
-+
-+#else
-+static inline void resched_task(struct task_struct *p)
-+{
-+ assert_raw_spin_locked(&grq.lock);
-+ set_tsk_need_resched(p);
-+}
-+#endif
-+
-+/**
-+ * task_curr - is this task currently executing on a CPU?
-+ * @p: the task in question.
-+ */
-+inline int task_curr(const struct task_struct *p)
-+{
-+ return cpu_curr(task_cpu(p)) == p;
-+}
-+
-+#ifdef CONFIG_SMP
-+struct migration_req {
-+ struct task_struct *task;
-+ int dest_cpu;
-+};
-+
-+/*
-+ * wait_task_inactive - wait for a thread to unschedule.
-+ *
-+ * If @match_state is nonzero, it's the @p->state value just checked and
-+ * not expected to change. If it changes, i.e. @p might have woken up,
-+ * then return zero. When we succeed in waiting for @p to be off its CPU,
-+ * we return a positive number (its total switch count). If a second call
-+ * a short while later returns the same number, the caller can be sure that
-+ * @p has remained unscheduled the whole time.
-+ *
-+ * The caller must ensure that the task *will* unschedule sometime soon,
-+ * else this function might spin for a *long* time. This function can't
-+ * be called with interrupts off, or it may introduce deadlock with
-+ * smp_call_function() if an IPI is sent by the same process we are
-+ * waiting to become inactive.
-+ */
-+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
-+{
-+ unsigned long flags;
-+ int running, on_rq;
-+ unsigned long ncsw;
-+ struct rq *rq;
-+
-+ for (;;) {
-+ /*
-+ * We do the initial early heuristics without holding
-+ * any task-queue locks at all. We'll only try to get
-+ * the runqueue lock when things look like they will
-+ * work out! In the unlikely event rq is dereferenced
-+ * since we're lockless, grab it again.
-+ */
-+#ifdef CONFIG_SMP
-+retry_rq:
-+ rq = task_rq(p);
-+ if (unlikely(!rq))
-+ goto retry_rq;
-+#else /* CONFIG_SMP */
-+ rq = task_rq(p);
-+#endif
-+ /*
-+ * If the task is actively running on another CPU
-+ * still, just relax and busy-wait without holding
-+ * any locks.
-+ *
-+ * NOTE! Since we don't hold any locks, it's not
-+ * even sure that "rq" stays as the right runqueue!
-+ * But we don't care, since this will return false
-+ * if the runqueue has changed and p is actually now
-+ * running somewhere else!
-+ */
-+ while (task_running(p) && p == rq->curr) {
-+ if (match_state && unlikely(p->state != match_state))
-+ return 0;
-+ cpu_relax();
-+ }
-+
-+ /*
-+ * Ok, time to look more closely! We need the grq
-+ * lock now, to be *sure*. If we're wrong, we'll
-+ * just go back and repeat.
-+ */
-+ rq = task_grq_lock(p, &flags);
-+ trace_sched_wait_task(p);
-+ running = task_running(p);
-+ on_rq = task_queued(p);
-+ ncsw = 0;
-+ if (!match_state || p->state == match_state)
-+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
-+ task_grq_unlock(&flags);
-+
-+ /*
-+ * If it changed from the expected state, bail out now.
-+ */
-+ if (unlikely(!ncsw))
-+ break;
-+
-+ /*
-+ * Was it really running after all now that we
-+ * checked with the proper locks actually held?
-+ *
-+ * Oops. Go back and try again..
-+ */
-+ if (unlikely(running)) {
-+ cpu_relax();
-+ continue;
-+ }
-+
-+ /*
-+ * It's not enough that it's not actively running,
-+ * it must be off the runqueue _entirely_, and not
-+ * preempted!
-+ *
-+ * So if it was still runnable (but just not actively
-+ * running right now), it's preempted, and we should
-+ * yield - it could be a while.
-+ */
-+ if (unlikely(on_rq)) {
-+ schedule_timeout_uninterruptible(1);
-+ continue;
-+ }
-+
-+ /*
-+ * Ahh, all good. It wasn't running, and it wasn't
-+ * runnable, which means that it will never become
-+ * running in the future either. We're all done!
-+ */
-+ break;
-+ }
-+
-+ return ncsw;
-+}
-+
-+/***
-+ * kick_process - kick a running thread to enter/exit the kernel
-+ * @p: the to-be-kicked thread
-+ *
-+ * Cause a process which is running on another CPU to enter
-+ * kernel-mode, without any delay. (to get signals handled.)
-+ *
-+ * NOTE: this function doesnt have to take the runqueue lock,
-+ * because all it wants to ensure is that the remote task enters
-+ * the kernel. If the IPI races and the task has been migrated
-+ * to another CPU then no harm is done and the purpose has been
-+ * achieved as well.
-+ */
-+void kick_process(struct task_struct *p)
-+{
-+ int cpu;
-+
-+ preempt_disable();
-+ cpu = task_cpu(p);
-+ if ((cpu != smp_processor_id()) && task_curr(p))
-+ smp_send_reschedule(cpu);
-+ preempt_enable();
-+}
-+EXPORT_SYMBOL_GPL(kick_process);
-+#endif
-+
-+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
-+
-+/*
-+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
-+ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
-+ * between themselves, they cooperatively multitask. An idle rq scores as
-+ * prio PRIO_LIMIT so it is always preempted.
-+ */
-+static inline int
-+can_preempt(struct task_struct *p, int prio, u64 deadline,
-+ unsigned int policy)
-+{
-+ /* Better static priority RT task or better policy preemption */
-+ if (p->prio < prio)
-+ return 1;
-+ if (p->prio > prio)
-+ return 0;
-+ /* SCHED_NORMAL, BATCH and ISO will preempt based on deadline */
-+ if (!deadline_before(p->deadline, deadline))
-+ return 0;
-+ return 1;
-+}
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_HOTPLUG_CPU
-+/*
-+ * Check to see if there is a task that is affined only to offline CPUs but
-+ * still wants runtime. This happens to kernel threads during suspend/halt and
-+ * disabling of CPUs.
-+ */
-+static inline int online_cpus(struct task_struct *p)
-+{
-+ return (likely(cpus_intersects(cpu_online_map, p->cpus_allowed)));
-+}
-+#else /* CONFIG_HOTPLUG_CPU */
-+/* All available CPUs are always online without hotplug. */
-+static inline int online_cpus(struct task_struct *p)
-+{
-+ return 1;
-+}
-+#endif
-+
-+/*
-+ * Check to see if p can run on cpu, and if not, whether there are any online
-+ * CPUs it can run on instead.
-+ */
-+static inline int needs_other_cpu(struct task_struct *p, int cpu)
-+{
-+ if (unlikely(!cpu_isset(cpu, p->cpus_allowed)))
-+ return 1;
-+ return 0;
-+}
-+
-+/*
-+ * latest_deadline and highest_prio_rq are initialised only to silence the
-+ * compiler. When all else is equal, still prefer this_rq.
-+ */
-+static void try_preempt(struct task_struct *p, struct rq *this_rq)
-+{
-+ struct rq *highest_prio_rq = this_rq;
-+ u64 latest_deadline;
-+ unsigned long cpu;
-+ int highest_prio;
-+ cpumask_t tmp;
-+
-+ if (suitable_idle_cpus(p)) {
-+ resched_best_idle(p);
-+ return;
-+ }
-+
-+ /* IDLEPRIO tasks never preempt anything */
-+ if (p->policy == SCHED_IDLEPRIO)
-+ return;
-+
-+ if (likely(online_cpus(p)))
-+ cpus_and(tmp, cpu_online_map, p->cpus_allowed);
-+ else
-+ return;
-+
-+ latest_deadline = 0;
-+ highest_prio = -1;
-+
-+ for_each_cpu_mask(cpu, tmp) {
-+ u64 offset_deadline;
-+ struct rq *rq;
-+ int rq_prio;
-+
-+ rq = cpu_rq(cpu);
-+ rq_prio = rq->rq_prio;
-+ if (rq_prio < highest_prio)
-+ continue;
-+
-+ offset_deadline = rq->rq_deadline -
-+ cache_distance(this_rq, rq, p);
-+
-+ if (rq_prio > highest_prio || (rq_prio == highest_prio &&
-+ deadline_after(offset_deadline, latest_deadline))) {
-+ latest_deadline = offset_deadline;
-+ highest_prio = rq_prio;
-+ highest_prio_rq = rq;
-+ }
-+ }
-+
-+ if (!can_preempt(p, highest_prio, highest_prio_rq->rq_deadline,
-+ highest_prio_rq->rq_policy))
-+ return;
-+
-+ resched_task(highest_prio_rq->curr);
-+}
-+#else /* CONFIG_SMP */
-+static inline int needs_other_cpu(struct task_struct *p, int cpu)
-+{
-+ return 0;
-+}
-+
-+static void try_preempt(struct task_struct *p, struct rq *this_rq)
-+{
-+ if (p->policy == SCHED_IDLEPRIO)
-+ return;
-+ if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline,
-+ uprq->rq_policy))
-+ resched_task(uprq->curr);
-+}
-+#endif /* CONFIG_SMP */
-+
-+/**
-+ * task_oncpu_function_call - call a function on the cpu on which a task runs
-+ * @p: the task to evaluate
-+ * @func: the function to be called
-+ * @info: the function call argument
-+ *
-+ * Calls the function @func when the task is currently running. This might
-+ * be on the current CPU, which just calls the function directly
-+ */
-+void task_oncpu_function_call(struct task_struct *p,
-+ void (*func) (void *info), void *info)
-+{
-+ int cpu;
-+
-+ preempt_disable();
-+ cpu = task_cpu(p);
-+ if (task_curr(p))
-+ smp_call_function_single(cpu, func, info, 1);
-+ preempt_enable();
-+}
-+
-+static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
-+ bool is_sync)
-+{
-+ activate_task(p, rq);
-+
-+ /*
-+ * Sync wakeups (i.e. those types of wakeups where the waker
-+ * has indicated that it will leave the CPU in short order)
-+ * don't trigger a preemption if there are no idle cpus,
-+ * instead waiting for current to deschedule.
-+ */
-+ if (!is_sync || suitable_idle_cpus(p))
-+ try_preempt(p, rq);
-+}
-+
-+static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
-+ bool success)
-+{
-+ trace_sched_wakeup(p, success);
-+ p->state = TASK_RUNNING;
-+
-+ /*
-+ * if a worker is waking up, notify workqueue. Note that on BFS, we
-+ * don't really know what cpu it will be, so we fake it for
-+ * wq_worker_waking_up :/
-+ */
-+ if ((p->flags & PF_WQ_WORKER) && success)
-+ wq_worker_waking_up(p, cpu_of(rq));
-+}
-+
-+/***
-+ * try_to_wake_up - wake up a thread
-+ * @p: the thread to be awakened
-+ * @state: the mask of task states that can be woken
-+ * @wake_flags: wake modifier flags (WF_*)
-+ *
-+ * Put it on the run-queue if it's not already there. The "current"
-+ * thread is always on the run-queue (except when the actual
-+ * re-schedule is in progress), and as such you're allowed to do
-+ * the simpler "current->state = TASK_RUNNING" to mark yourself
-+ * runnable without the overhead of this.
-+ *
-+ * Returns %true if @p was woken up, %false if it was already running
-+ * or @state didn't match @p's state.
-+ */
-+static int try_to_wake_up(struct task_struct *p, unsigned int state,
-+ int wake_flags)
-+{
-+ unsigned long flags;
-+ int success = 0;
-+ struct rq *rq;
-+
-+ get_cpu();
-+
-+ /* This barrier is undocumented, probably for p->state? くそ */
-+ smp_wmb();
-+
-+ /*
-+ * No need to do time_lock_grq as we only need to update the rq clock
-+ * if we activate the task
-+ */
-+ rq = task_grq_lock(p, &flags);
-+
-+ /* state is a volatile long, どうして、分からない */
-+ if (!((unsigned int)p->state & state))
-+ goto out_unlock;
-+
-+ if (task_queued(p) || task_running(p))
-+ goto out_running;
-+
-+ ttwu_activate(p, rq, wake_flags & WF_SYNC);
-+ success = true;
-+
-+out_running:
-+ ttwu_post_activation(p, rq, success);
-+out_unlock:
-+ task_grq_unlock(&flags);
-+ put_cpu();
-+
-+ return success;
-+}
-+
-+/**
-+ * try_to_wake_up_local - try to wake up a local task with grq lock held
-+ * @p: the thread to be awakened
-+ *
-+ * Put @p on the run-queue if it's not already there. The caller must
-+ * ensure that grq is locked and, @p is not the current task.
-+ * grq stays locked over invocation.
-+ */
-+static void try_to_wake_up_local(struct task_struct *p)
-+{
-+ struct rq *rq = task_rq(p);
-+ bool success = false;
-+
-+ WARN_ON(rq != this_rq());
-+ BUG_ON(p == current);
-+ lockdep_assert_held(&grq.lock);
-+
-+ if (!(p->state & TASK_NORMAL))
-+ return;
-+
-+ if (!task_queued(p)) {
-+ if (likely(!task_running(p))) {
-+ schedstat_inc(rq, ttwu_count);
-+ schedstat_inc(rq, ttwu_local);
-+ }
-+ ttwu_activate(p, rq, false);
-+ success = true;
-+ }
-+ ttwu_post_activation(p, rq, success);
-+}
-+
-+/**
-+ * wake_up_process - Wake up a specific process
-+ * @p: The process to be woken up.
-+ *
-+ * Attempt to wake up the nominated process and move it to the set of runnable
-+ * processes. Returns 1 if the process was woken up, 0 if it was already
-+ * running.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+int wake_up_process(struct task_struct *p)
-+{
-+ return try_to_wake_up(p, TASK_ALL, 0);
-+}
-+EXPORT_SYMBOL(wake_up_process);
-+
-+int wake_up_state(struct task_struct *p, unsigned int state)
-+{
-+ return try_to_wake_up(p, state, 0);
-+}
-+
-+static void time_slice_expired(struct task_struct *p);
-+
-+/*
-+ * Perform scheduler related setup for a newly forked process p.
-+ * p is forked by current.
-+ */
-+void sched_fork(struct task_struct *p, int clone_flags)
-+{
-+ struct task_struct *curr;
-+ int cpu = get_cpu();
-+ struct rq *rq;
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+ INIT_HLIST_HEAD(&p->preempt_notifiers);
-+#endif
-+ /*
-+ * We mark the process as running here. This guarantees that
-+ * nobody will actually run it, and a signal or other external
-+ * event cannot wake it up and insert it on the runqueue either.
-+ */
-+ p->state = TASK_RUNNING;
-+ set_task_cpu(p, cpu);
-+
-+ /* Should be reset in fork.c but done here for ease of bfs patching */
-+ p->sched_time = p->stime_pc = p->utime_pc = 0;
-+
-+ /*
-+ * Revert to default priority/policy on fork if requested.
-+ */
-+ if (unlikely(p->sched_reset_on_fork)) {
-+ if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
-+ p->policy = SCHED_NORMAL;
-+ p->normal_prio = normal_prio(p);
-+ }
-+
-+ if (PRIO_TO_NICE(p->static_prio) < 0) {
-+ p->static_prio = NICE_TO_PRIO(0);
-+ p->normal_prio = p->static_prio;
-+ }
-+
-+ /*
-+ * We don't need the reset flag anymore after the fork. It has
-+ * fulfilled its duty:
-+ */
-+ p->sched_reset_on_fork = 0;
-+ }
-+
-+ curr = current;
-+ /*
-+ * Make sure we do not leak PI boosting priority to the child.
-+ */
-+ p->prio = curr->normal_prio;
-+
-+ INIT_LIST_HEAD(&p->run_list);
-+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-+ if (unlikely(sched_info_on()))
-+ memset(&p->sched_info, 0, sizeof(p->sched_info));
-+#endif
-+
-+ p->oncpu = 0;
-+
-+#ifdef CONFIG_PREEMPT
-+ /* Want to start with kernel preemption disabled. */
-+ task_thread_info(p)->preempt_count = 1;
-+#endif
-+ if (unlikely(p->policy == SCHED_FIFO))
-+ goto out;
-+ /*
-+ * Share the timeslice between parent and child, thus the
-+ * total amount of pending timeslices in the system doesn't change,
-+ * resulting in more scheduling fairness. If it's negative, it won't
-+ * matter since that's the same as being 0. current's time_slice is
-+ * actually in rq_time_slice when it's running, as is its last_ran
-+ * value. rq->rq_deadline is only modified within schedule() so it
-+ * is always equal to current->deadline.
-+ */
-+ rq = task_grq_lock_irq(curr);
-+ if (likely(rq->rq_time_slice >= RESCHED_US * 2)) {
-+ rq->rq_time_slice /= 2;
-+ p->time_slice = rq->rq_time_slice;
-+ } else {
-+ /*
-+ * Forking task has run out of timeslice. Reschedule it and
-+ * start its child with a new time slice and deadline. The
-+ * child will end up running first because its deadline will
-+ * be slightly earlier.
-+ */
-+ rq->rq_time_slice = 0;
-+ set_tsk_need_resched(curr);
-+ time_slice_expired(p);
-+ }
-+ p->last_ran = rq->rq_last_ran;
-+ task_grq_unlock_irq();
-+out:
-+ put_cpu();
-+}
-+
-+/*
-+ * wake_up_new_task - wake up a newly created task for the first time.
-+ *
-+ * This function will do some initial scheduler statistics housekeeping
-+ * that must be done for every newly created context, then puts the task
-+ * on the runqueue and wakes it.
-+ */
-+void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
-+{
-+ struct task_struct *parent;
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ rq = task_grq_lock(p, &flags);
-+ p->state = TASK_RUNNING;
-+ parent = p->parent;
-+ /* Unnecessary but small chance that the parent changed CPU */
-+ set_task_cpu(p, task_cpu(parent));
-+ activate_task(p, rq);
-+ trace_sched_wakeup_new(p, 1);
-+ if (!(clone_flags & CLONE_VM) && rq->curr == parent &&
-+ !suitable_idle_cpus(p)) {
-+ /*
-+ * The VM isn't cloned, so we're in a good position to
-+ * do child-runs-first in anticipation of an exec. This
-+ * usually avoids a lot of COW overhead.
-+ */
-+ resched_task(parent);
-+ } else
-+ try_preempt(p, rq);
-+ task_grq_unlock(&flags);
-+}
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+
-+/**
-+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
-+ * @notifier: notifier struct to register
-+ */
-+void preempt_notifier_register(struct preempt_notifier *notifier)
-+{
-+ hlist_add_head(&notifier->link, &current->preempt_notifiers);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_register);
-+
-+/**
-+ * preempt_notifier_unregister - no longer interested in preemption notifications
-+ * @notifier: notifier struct to unregister
-+ *
-+ * This is safe to call from within a preemption notifier.
-+ */
-+void preempt_notifier_unregister(struct preempt_notifier *notifier)
-+{
-+ hlist_del(&notifier->link);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-+
-+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+ struct preempt_notifier *notifier;
-+ struct hlist_node *node;
-+
-+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
-+}
-+
-+static void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+ struct preempt_notifier *notifier;
-+ struct hlist_node *node;
-+
-+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-+ notifier->ops->sched_out(notifier, next);
-+}
-+
-+#else /* !CONFIG_PREEMPT_NOTIFIERS */
-+
-+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+}
-+
-+static void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+}
-+
-+#endif /* CONFIG_PREEMPT_NOTIFIERS */
-+
-+/**
-+ * prepare_task_switch - prepare to switch tasks
-+ * @rq: the runqueue preparing to switch
-+ * @next: the task we are going to switch to.
-+ *
-+ * This is called with the rq lock held and interrupts off. It must
-+ * be paired with a subsequent finish_task_switch after the context
-+ * switch.
-+ *
-+ * prepare_task_switch sets up locking and calls architecture specific
-+ * hooks.
-+ */
-+static inline void
-+prepare_task_switch(struct rq *rq, struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ fire_sched_out_preempt_notifiers(prev, next);
-+ prepare_lock_switch(rq, next);
-+ prepare_arch_switch(next);
-+}
-+
-+/**
-+ * finish_task_switch - clean up after a task-switch
-+ * @rq: runqueue associated with task-switch
-+ * @prev: the thread we just switched away from.
-+ *
-+ * finish_task_switch must be called after the context switch, paired
-+ * with a prepare_task_switch call before the context switch.
-+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
-+ * and do any other architecture-specific cleanup actions.
-+ *
-+ * Note that we may have delayed dropping an mm in context_switch(). If
-+ * so, we finish that here outside of the runqueue lock. (Doing it
-+ * with the lock held can cause deadlocks; see schedule() for
-+ * details.)
-+ */
-+static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
-+ __releases(grq.lock)
-+{
-+ struct mm_struct *mm = rq->prev_mm;
-+ long prev_state;
-+
-+ rq->prev_mm = NULL;
-+
-+ /*
-+ * A task struct has one reference for the use as "current".
-+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
-+ * schedule one last time. The schedule call will never return, and
-+ * the scheduled task must drop that reference.
-+ * The test for TASK_DEAD must occur while the runqueue locks are
-+ * still held, otherwise prev could be scheduled on another cpu, die
-+ * there before we look at prev->state, and then the reference would
-+ * be dropped twice.
-+ * Manfred Spraul <manfred@colorfullife.com>
-+ */
-+ prev_state = prev->state;
-+ finish_arch_switch(prev);
-+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+ local_irq_disable();
-+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
-+ perf_event_task_sched_in(current);
-+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+ local_irq_enable();
-+#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
-+ finish_lock_switch(rq, prev);
-+
-+ fire_sched_in_preempt_notifiers(current);
-+ if (mm)
-+ mmdrop(mm);
-+ if (unlikely(prev_state == TASK_DEAD)) {
-+ /*
-+ * Remove function-return probe instances associated with this
-+ * task and put them back on the free list.
-+ */
-+ kprobe_flush_task(prev);
-+ put_task_struct(prev);
-+ }
-+}
-+
-+/**
-+ * schedule_tail - first thing a freshly forked thread must call.
-+ * @prev: the thread we just switched away from.
-+ */
-+asmlinkage void schedule_tail(struct task_struct *prev)
-+ __releases(grq.lock)
-+{
-+ struct rq *rq = this_rq();
-+
-+ finish_task_switch(rq, prev);
-+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
-+ /* In this case, finish_task_switch does not reenable preemption */
-+ preempt_enable();
-+#endif
-+ if (current->set_child_tid)
-+ put_user(current->pid, current->set_child_tid);
-+}
-+
-+/*
-+ * context_switch - switch to the new MM and the new
-+ * thread's register state.
-+ */
-+static inline void
-+context_switch(struct rq *rq, struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ struct mm_struct *mm, *oldmm;
-+
-+ prepare_task_switch(rq, prev, next);
-+ trace_sched_switch(prev, next);
-+ mm = next->mm;
-+ oldmm = prev->active_mm;
-+ /*
-+ * For paravirt, this is coupled with an exit in switch_to to
-+ * combine the page table reload and the switch backend into
-+ * one hypercall.
-+ */
-+ arch_start_context_switch(prev);
-+
-+ if (!mm) {
-+ next->active_mm = oldmm;
-+ atomic_inc(&oldmm->mm_count);
-+ enter_lazy_tlb(oldmm, next);
-+ } else
-+ switch_mm(oldmm, mm, next);
-+
-+ if (!prev->mm) {
-+ prev->active_mm = NULL;
-+ rq->prev_mm = oldmm;
-+ }
-+ /*
-+ * Since the runqueue lock will be released by the next
-+ * task (which is an invalid locking op but in the case
-+ * of the scheduler it's an obvious special-case), so we
-+ * do an early lockdep release here:
-+ */
-+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
-+#endif
-+
-+ /* Here we just switch the register state and the stack. */
-+ switch_to(prev, next, prev);
-+
-+ barrier();
-+ /*
-+ * this_rq must be evaluated again because prev may have moved
-+ * CPUs since it called schedule(), thus the 'rq' on its stack
-+ * frame will be invalid.
-+ */
-+ finish_task_switch(this_rq(), prev);
-+}
-+
-+/*
-+ * nr_running, nr_uninterruptible and nr_context_switches:
-+ *
-+ * externally visible scheduler statistics: current number of runnable
-+ * threads, current number of uninterruptible-sleeping threads, total
-+ * number of context switches performed since bootup. All are measured
-+ * without grabbing the grq lock but the occasional inaccurate result
-+ * doesn't matter so long as it's positive.
-+ */
-+unsigned long nr_running(void)
-+{
-+ long nr = grq.nr_running;
-+
-+ if (unlikely(nr < 0))
-+ nr = 0;
-+ return (unsigned long)nr;
-+}
-+
-+unsigned long nr_uninterruptible(void)
-+{
-+ long nu = grq.nr_uninterruptible;
-+
-+ if (unlikely(nu < 0))
-+ nu = 0;
-+ return nu;
-+}
-+
-+unsigned long long nr_context_switches(void)
-+{
-+ long long ns = grq.nr_switches;
-+
-+ /* This is of course impossible */
-+ if (unlikely(ns < 0))
-+ ns = 1;
-+ return (long long)ns;
-+}
-+
-+unsigned long nr_iowait(void)
-+{
-+ unsigned long i, sum = 0;
-+
-+ for_each_possible_cpu(i)
-+ sum += atomic_read(&cpu_rq(i)->nr_iowait);
-+
-+ return sum;
-+}
-+
-+unsigned long nr_iowait_cpu(int cpu)
-+{
-+ struct rq *this = cpu_rq(cpu);
-+ return atomic_read(&this->nr_iowait);
-+}
-+
-+unsigned long nr_active(void)
-+{
-+ return nr_running() + nr_uninterruptible();
-+}
-+
-+/* Beyond a task running on this CPU, load is equal everywhere on BFS */
-+unsigned long this_cpu_load(void)
-+{
-+ return this_rq()->rq_running +
-+ (queued_notrunning() + nr_uninterruptible()) /
-+ (1 + num_online_cpus());
-+}
-+
-+/* Variables and functions for calc_load */
-+static unsigned long calc_load_update;
-+unsigned long avenrun[3];
-+EXPORT_SYMBOL(avenrun);
-+
-+/**
-+ * get_avenrun - get the load average array
-+ * @loads: pointer to dest load array
-+ * @offset: offset to add
-+ * @shift: shift count to shift the result left
-+ *
-+ * These values are estimates at best, so no need for locking.
-+ */
-+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
-+{
-+ loads[0] = (avenrun[0] + offset) << shift;
-+ loads[1] = (avenrun[1] + offset) << shift;
-+ loads[2] = (avenrun[2] + offset) << shift;
-+}
-+
-+static unsigned long
-+calc_load(unsigned long load, unsigned long exp, unsigned long active)
-+{
-+ load *= exp;
-+ load += active * (FIXED_1 - exp);
-+ return load >> FSHIFT;
-+}
-+
-+/*
-+ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
-+ */
-+void calc_global_load(unsigned long ticks)
-+{
-+ long active;
-+
-+ if (time_before(jiffies, calc_load_update))
-+ return;
-+ active = nr_active() * FIXED_1;
-+
-+ avenrun[0] = calc_load(avenrun[0], EXP_1, active);
-+ avenrun[1] = calc_load(avenrun[1], EXP_5, active);
-+ avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-+
-+ calc_load_update = jiffies + LOAD_FREQ;
-+}
-+
-+DEFINE_PER_CPU(struct kernel_stat, kstat);
-+
-+EXPORT_PER_CPU_SYMBOL(kstat);
-+
-+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
-+
-+/*
-+ * There are no locks covering percpu hardirq/softirq time.
-+ * They are only modified in account_system_vtime, on corresponding CPU
-+ * with interrupts disabled. So, writes are safe.
-+ * They are read and saved off onto struct rq in update_rq_clock().
-+ * This may result in other CPU reading this CPU's irq time and can
-+ * race with irq/account_system_vtime on this CPU. We would either get old
-+ * or new value with a side effect of accounting a slice of irq time to wrong
-+ * task when irq is in progress while we read rq->clock. That is a worthy
-+ * compromise in place of having locks on each irq in account_system_time.
-+ */
-+static DEFINE_PER_CPU(u64, cpu_hardirq_time);
-+static DEFINE_PER_CPU(u64, cpu_softirq_time);
-+
-+static DEFINE_PER_CPU(u64, irq_start_time);
-+static int sched_clock_irqtime;
-+
-+void enable_sched_clock_irqtime(void)
-+{
-+ sched_clock_irqtime = 1;
-+}
-+
-+void disable_sched_clock_irqtime(void)
-+{
-+ sched_clock_irqtime = 0;
-+}
-+
-+#ifndef CONFIG_64BIT
-+static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
-+
-+static inline void irq_time_write_begin(void)
-+{
-+ __this_cpu_inc(irq_time_seq.sequence);
-+ smp_wmb();
-+}
-+
-+static inline void irq_time_write_end(void)
-+{
-+ smp_wmb();
-+ __this_cpu_inc(irq_time_seq.sequence);
-+}
-+
-+static inline u64 irq_time_read(int cpu)
-+{
-+ u64 irq_time;
-+ unsigned seq;
-+
-+ do {
-+ seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
-+ irq_time = per_cpu(cpu_softirq_time, cpu) +
-+ per_cpu(cpu_hardirq_time, cpu);
-+ } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
-+
-+ return irq_time;
-+}
-+#else /* CONFIG_64BIT */
-+static inline void irq_time_write_begin(void)
-+{
-+}
-+
-+static inline void irq_time_write_end(void)
-+{
-+}
-+
-+static inline u64 irq_time_read(int cpu)
-+{
-+ return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
-+}
-+#endif /* CONFIG_64BIT */
-+
-+/*
-+ * Called before incrementing preempt_count on {soft,}irq_enter
-+ * and before decrementing preempt_count on {soft,}irq_exit.
-+ */
-+void account_system_vtime(struct task_struct *curr)
-+{
-+ unsigned long flags;
-+ s64 delta;
-+ int cpu;
-+
-+ if (!sched_clock_irqtime)
-+ return;
-+
-+ local_irq_save(flags);
-+
-+ cpu = smp_processor_id();
-+ delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
-+ __this_cpu_add(irq_start_time, delta);
-+
-+ irq_time_write_begin();
-+ /*
-+ * We do not account for softirq time from ksoftirqd here.
-+ * We want to continue accounting softirq time to ksoftirqd thread
-+ * in that case, so as not to confuse scheduler with a special task
-+ * that do not consume any time, but still wants to run.
-+ */
-+ if (hardirq_count())
-+ __this_cpu_add(cpu_hardirq_time, delta);
-+ else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
-+ __this_cpu_add(cpu_softirq_time, delta);
-+
-+ irq_time_write_end();
-+ local_irq_restore(flags);
-+}
-+EXPORT_SYMBOL_GPL(account_system_vtime);
-+
-+static void update_rq_clock_task(struct rq *rq, s64 delta)
-+{
-+ s64 irq_delta;
-+
-+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
-+
-+ /*
-+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
-+ * this case when a previous update_rq_clock() happened inside a
-+ * {soft,}irq region.
-+ *
-+ * When this happens, we stop ->clock_task and only update the
-+ * prev_irq_time stamp to account for the part that fit, so that a next
-+ * update will consume the rest. This ensures ->clock_task is
-+ * monotonic.
-+ *
-+ * It does however cause some slight miss-attribution of {soft,}irq
-+ * time, a more accurate solution would be to update the irq_time using
-+ * the current rq->clock timestamp, except that would require using
-+ * atomic ops.
-+ */
-+ if (irq_delta > delta)
-+ irq_delta = delta;
-+
-+ rq->prev_irq_time += irq_delta;
-+ delta -= irq_delta;
-+ rq->clock_task += delta;
-+}
-+
-+#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-+
-+static void update_rq_clock_task(struct rq *rq, s64 delta)
-+{
-+ rq->clock_task += delta;
-+}
-+
-+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
-+
-+/*
-+ * On each tick, see what percentage of that tick was attributed to each
-+ * component and add the percentage to the _pc values. Once a _pc value has
-+ * accumulated one tick's worth, account for that. This means the total
-+ * percentage of load components will always be 100 per tick.
-+ */
-+static void pc_idle_time(struct rq *rq, unsigned long pc)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
-+
-+ if (atomic_read(&rq->nr_iowait) > 0) {
-+ rq->iowait_pc += pc;
-+ if (rq->iowait_pc >= 100) {
-+ rq->iowait_pc %= 100;
-+ cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
-+ }
-+ } else {
-+ rq->idle_pc += pc;
-+ if (rq->idle_pc >= 100) {
-+ rq->idle_pc %= 100;
-+ cpustat->idle = cputime64_add(cpustat->idle, tmp);
-+ }
-+ }
-+}
-+
-+static void
-+pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset,
-+ unsigned long pc, unsigned long ns)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-+ cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
-+
-+ p->stime_pc += pc;
-+ if (p->stime_pc >= 100) {
-+ p->stime_pc -= 100;
-+ p->stime = cputime_add(p->stime, cputime_one_jiffy);
-+ p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled);
-+ account_group_system_time(p, cputime_one_jiffy);
-+ acct_update_integrals(p);
-+ }
-+ p->sched_time += ns;
-+
-+ if (hardirq_count() - hardirq_offset) {
-+ rq->irq_pc += pc;
-+ if (rq->irq_pc >= 100) {
-+ rq->irq_pc %= 100;
-+ cpustat->irq = cputime64_add(cpustat->irq, tmp);
-+ }
-+ } else if (in_serving_softirq()) {
-+ rq->softirq_pc += pc;
-+ if (rq->softirq_pc >= 100) {
-+ rq->softirq_pc %= 100;
-+ cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
-+ }
-+ } else {
-+ rq->system_pc += pc;
-+ if (rq->system_pc >= 100) {
-+ rq->system_pc %= 100;
-+ cpustat->system = cputime64_add(cpustat->system, tmp);
-+ }
-+ }
-+}
-+
-+static void pc_user_time(struct rq *rq, struct task_struct *p,
-+ unsigned long pc, unsigned long ns)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
-+ cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
-+
-+ p->utime_pc += pc;
-+ if (p->utime_pc >= 100) {
-+ p->utime_pc -= 100;
-+ p->utime = cputime_add(p->utime, cputime_one_jiffy);
-+ p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled);
-+ account_group_user_time(p, cputime_one_jiffy);
-+ acct_update_integrals(p);
-+ }
-+ p->sched_time += ns;
-+
-+ if (TASK_NICE(p) > 0 || idleprio_task(p)) {
-+ rq->nice_pc += pc;
-+ if (rq->nice_pc >= 100) {
-+ rq->nice_pc %= 100;
-+ cpustat->nice = cputime64_add(cpustat->nice, tmp);
-+ }
-+ } else {
-+ rq->user_pc += pc;
-+ if (rq->user_pc >= 100) {
-+ rq->user_pc %= 100;
-+ cpustat->user = cputime64_add(cpustat->user, tmp);
-+ }
-+ }
-+}
-+
-+/* Convert nanoseconds to percentage of one tick. */
-+#define NS_TO_PC(NS) (NS * 100 / JIFFY_NS)
-+
-+/*
-+ * This is called on clock ticks and on context switches.
-+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
-+ * CPU scheduler quota accounting is also performed here in microseconds.
-+ */
-+static void
-+update_cpu_clock(struct rq *rq, struct task_struct *p, int tick)
-+{
-+ long account_ns = rq->clock - rq->timekeep_clock;
-+ struct task_struct *idle = rq->idle;
-+ unsigned long account_pc;
-+
-+ if (unlikely(account_ns < 0))
-+ account_ns = 0;
-+
-+ account_pc = NS_TO_PC(account_ns);
-+
-+ if (tick) {
-+ int user_tick = user_mode(get_irq_regs());
-+
-+ /* Accurate tick timekeeping */
-+ if (user_tick)
-+ pc_user_time(rq, p, account_pc, account_ns);
-+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET))
-+ pc_system_time(rq, p, HARDIRQ_OFFSET,
-+ account_pc, account_ns);
-+ else
-+ pc_idle_time(rq, account_pc);
-+ } else {
-+ /* Accurate subtick timekeeping */
-+ if (p == idle)
-+ pc_idle_time(rq, account_pc);
-+ else
-+ pc_user_time(rq, p, account_pc, account_ns);
-+ }
-+
-+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
-+ if (rq->rq_policy != SCHED_FIFO && p != idle) {
-+ s64 time_diff = rq->clock - rq->rq_last_ran;
-+
-+ niffy_diff(&time_diff, 1);
-+ rq->rq_time_slice -= NS_TO_US(time_diff);
-+ }
-+ rq->rq_last_ran = rq->timekeep_clock = rq->clock;
-+}
-+
-+/*
-+ * Return any ns on the sched_clock that have not yet been accounted in
-+ * @p in case that task is currently running.
-+ *
-+ * Called with task_grq_lock() held.
-+ */
-+static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
-+{
-+ u64 ns = 0;
-+
-+ if (p == rq->curr) {
-+ update_clocks(rq);
-+ ns = rq->clock_task - rq->rq_last_ran;
-+ if (unlikely((s64)ns < 0))
-+ ns = 0;
-+ }
-+
-+ return ns;
-+}
-+
-+unsigned long long task_delta_exec(struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+ u64 ns;
-+
-+ rq = task_grq_lock(p, &flags);
-+ ns = do_task_delta_exec(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ return ns;
-+}
-+
-+/*
-+ * Return accounted runtime for the task.
-+ * In case the task is currently running, return the runtime plus current's
-+ * pending runtime that have not been accounted yet.
-+ */
-+unsigned long long task_sched_runtime(struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+ u64 ns;
-+
-+ rq = task_grq_lock(p, &flags);
-+ ns = p->sched_time + do_task_delta_exec(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ return ns;
-+}
-+
-+/*
-+ * Return sum_exec_runtime for the thread group.
-+ * In case the task is currently running, return the sum plus current's
-+ * pending runtime that have not been accounted yet.
-+ *
-+ * Note that the thread group might have other running tasks as well,
-+ * so the return value not includes other pending runtime that other
-+ * running tasks might have.
-+ */
-+unsigned long long thread_group_sched_runtime(struct task_struct *p)
-+{
-+ struct task_cputime totals;
-+ unsigned long flags;
-+ struct rq *rq;
-+ u64 ns;
-+
-+ rq = task_grq_lock(p, &flags);
-+ thread_group_cputime(p, &totals);
-+ ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ return ns;
-+}
-+
-+/* Compatibility crap for removal */
-+void account_user_time(struct task_struct *p, cputime_t cputime,
-+ cputime_t cputime_scaled)
-+{
-+}
-+
-+void account_idle_time(cputime_t cputime)
-+{
-+}
-+
-+/*
-+ * Account guest cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @cputime: the cpu time spent in virtual machine since the last update
-+ * @cputime_scaled: cputime scaled by cpu frequency
-+ */
-+static void account_guest_time(struct task_struct *p, cputime_t cputime,
-+ cputime_t cputime_scaled)
-+{
-+ cputime64_t tmp;
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+
-+ tmp = cputime_to_cputime64(cputime);
-+
-+ /* Add guest time to process. */
-+ p->utime = cputime_add(p->utime, cputime);
-+ p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
-+ account_group_user_time(p, cputime);
-+ p->gtime = cputime_add(p->gtime, cputime);
-+
-+ /* Add guest time to cpustat. */
-+ if (TASK_NICE(p) > 0) {
-+ cpustat->nice = cputime64_add(cpustat->nice, tmp);
-+ cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
-+ } else {
-+ cpustat->user = cputime64_add(cpustat->user, tmp);
-+ cpustat->guest = cputime64_add(cpustat->guest, tmp);
-+ }
-+}
-+
-+/*
-+ * Account system cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @hardirq_offset: the offset to subtract from hardirq_count()
-+ * @cputime: the cpu time spent in kernel space since the last update
-+ * @cputime_scaled: cputime scaled by cpu frequency
-+ * This is for guest only now.
-+ */
-+void account_system_time(struct task_struct *p, int hardirq_offset,
-+ cputime_t cputime, cputime_t cputime_scaled)
-+{
-+
-+ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
-+ account_guest_time(p, cputime, cputime_scaled);
-+}
-+
-+/*
-+ * Account for involuntary wait time.
-+ * @steal: the cpu time spent in involuntary wait
-+ */
-+void account_steal_time(cputime_t cputime)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime64_t cputime64 = cputime_to_cputime64(cputime);
-+
-+ cpustat->steal = cputime64_add(cpustat->steal, cputime64);
-+}
-+
-+/*
-+ * Account for idle time.
-+ * @cputime: the cpu time spent in idle wait
-+ */
-+static void account_idle_times(cputime_t cputime)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime64_t cputime64 = cputime_to_cputime64(cputime);
-+ struct rq *rq = this_rq();
-+
-+ if (atomic_read(&rq->nr_iowait) > 0)
-+ cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
-+ else
-+ cpustat->idle = cputime64_add(cpustat->idle, cputime64);
-+}
-+
-+#ifndef CONFIG_VIRT_CPU_ACCOUNTING
-+
-+void account_process_tick(struct task_struct *p, int user_tick)
-+{
-+}
-+
-+/*
-+ * Account multiple ticks of steal time.
-+ * @p: the process from which the cpu time has been stolen
-+ * @ticks: number of stolen ticks
-+ */
-+void account_steal_ticks(unsigned long ticks)
-+{
-+ account_steal_time(jiffies_to_cputime(ticks));
-+}
-+
-+/*
-+ * Account multiple ticks of idle time.
-+ * @ticks: number of stolen ticks
-+ */
-+void account_idle_ticks(unsigned long ticks)
-+{
-+ account_idle_times(jiffies_to_cputime(ticks));
-+}
-+#endif
-+
-+static inline void grq_iso_lock(void)
-+ __acquires(grq.iso_lock)
-+{
-+ raw_spin_lock(&grq.iso_lock);
-+}
-+
-+static inline void grq_iso_unlock(void)
-+ __releases(grq.iso_lock)
-+{
-+ raw_spin_unlock(&grq.iso_lock);
-+}
-+
-+/*
-+ * Functions to test for when SCHED_ISO tasks have used their allocated
-+ * quota as real time scheduling and convert them back to SCHED_NORMAL.
-+ * Where possible, the data is tested lockless, to avoid grabbing iso_lock
-+ * because the occasional inaccurate result won't matter. However the
-+ * tick data is only ever modified under lock. iso_refractory is only simply
-+ * set to 0 or 1 so it's not worth grabbing the lock yet again for that.
-+ */
-+static void set_iso_refractory(void)
-+{
-+ grq.iso_refractory = 1;
-+}
-+
-+static void clear_iso_refractory(void)
-+{
-+ grq.iso_refractory = 0;
-+}
-+
-+/*
-+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
-+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
-+ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
-+ * slow division.
-+ */
-+static unsigned int test_ret_isorefractory(struct rq *rq)
-+{
-+ if (likely(!grq.iso_refractory)) {
-+ if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu)
-+ set_iso_refractory();
-+ } else {
-+ if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128))
-+ clear_iso_refractory();
-+ }
-+ return grq.iso_refractory;
-+}
-+
-+static void iso_tick(void)
-+{
-+ grq_iso_lock();
-+ grq.iso_ticks += 100;
-+ grq_iso_unlock();
-+}
-+
-+/* No SCHED_ISO task was running so decrease rq->iso_ticks */
-+static inline void no_iso_tick(void)
-+{
-+ if (grq.iso_ticks) {
-+ grq_iso_lock();
-+ grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1;
-+ if (unlikely(grq.iso_refractory && grq.iso_ticks <
-+ ISO_PERIOD * (sched_iso_cpu * 115 / 128)))
-+ clear_iso_refractory();
-+ grq_iso_unlock();
-+ }
-+}
-+
-+static int rq_running_iso(struct rq *rq)
-+{
-+ return rq->rq_prio == ISO_PRIO;
-+}
-+
-+/* This manages tasks that have run out of timeslice during a scheduler_tick */
-+static void task_running_tick(struct rq *rq)
-+{
-+ struct task_struct *p;
-+
-+ /*
-+ * If a SCHED_ISO task is running we increment the iso_ticks. In
-+ * order to prevent SCHED_ISO tasks from causing starvation in the
-+ * presence of true RT tasks we account those as iso_ticks as well.
-+ */
-+ if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) {
-+ if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100)
-+ iso_tick();
-+ } else
-+ no_iso_tick();
-+
-+ if (iso_queue(rq)) {
-+ if (unlikely(test_ret_isorefractory(rq))) {
-+ if (rq_running_iso(rq)) {
-+ /*
-+ * SCHED_ISO task is running as RT and limit
-+ * has been hit. Force it to reschedule as
-+ * SCHED_NORMAL by zeroing its time_slice
-+ */
-+ rq->rq_time_slice = 0;
-+ }
-+ }
-+ }
-+
-+ /* SCHED_FIFO tasks never run out of timeslice. */
-+ if (rq->rq_policy == SCHED_FIFO)
-+ return;
-+ /*
-+ * Tasks that were scheduled in the first half of a tick are not
-+ * allowed to run into the 2nd half of the next tick if they will
-+ * run out of time slice in the interim. Otherwise, if they have
-+ * less than RESCHED_US μs of time slice left they will be rescheduled.
-+ */
-+ if (rq->dither) {
-+ if (rq->rq_time_slice > HALF_JIFFY_US)
-+ return;
-+ else
-+ rq->rq_time_slice = 0;
-+ } else if (rq->rq_time_slice >= RESCHED_US)
-+ return;
-+
-+ /* p->time_slice < RESCHED_US. We only modify task_struct under grq lock */
-+ p = rq->curr;
-+ requeue_task(p);
-+ grq_lock();
-+ set_tsk_need_resched(p);
-+ grq_unlock();
-+}
-+
-+void wake_up_idle_cpu(int cpu);
-+
-+/*
-+ * This function gets called by the timer code, with HZ frequency.
-+ * We call it with interrupts disabled. The data modified is all
-+ * local to struct rq so we don't need to grab grq lock.
-+ */
-+void scheduler_tick(void)
-+{
-+ int cpu __maybe_unused = smp_processor_id();
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ sched_clock_tick();
-+ /* grq lock not grabbed, so only update rq clock */
-+ update_rq_clock(rq);
-+ update_cpu_clock(rq, rq->curr, 1);
-+ if (!rq_idle(rq))
-+ task_running_tick(rq);
-+ else
-+ no_iso_tick();
-+ rq->last_tick = rq->clock;
-+ perf_event_task_tick();
-+}
-+
-+notrace unsigned long get_parent_ip(unsigned long addr)
-+{
-+ if (in_lock_functions(addr)) {
-+ addr = CALLER_ADDR2;
-+ if (in_lock_functions(addr))
-+ addr = CALLER_ADDR3;
-+ }
-+ return addr;
-+}
-+
-+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
-+ defined(CONFIG_PREEMPT_TRACER))
-+void __kprobes add_preempt_count(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Underflow?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
-+ return;
-+#endif
-+ preempt_count() += val;
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Spinlock count overflowing soon?
-+ */
-+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
-+ PREEMPT_MASK - 10);
-+#endif
-+ if (preempt_count() == val)
-+ trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-+}
-+EXPORT_SYMBOL(add_preempt_count);
-+
-+void __kprobes sub_preempt_count(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Underflow?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
-+ return;
-+ /*
-+ * Is the spinlock portion underflowing?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-+ !(preempt_count() & PREEMPT_MASK)))
-+ return;
-+#endif
-+
-+ if (preempt_count() == val)
-+ trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-+ preempt_count() -= val;
-+}
-+EXPORT_SYMBOL(sub_preempt_count);
-+#endif
-+
-+/*
-+ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
-+ * is the key to everything. It distributes cpu fairly amongst tasks of the
-+ * same nice value, it proportions cpu according to nice level, it means the
-+ * task that last woke up the longest ago has the earliest deadline, thus
-+ * ensuring that interactive tasks get low latency on wake up. The CPU
-+ * proportion works out to the square of the virtual deadline difference, so
-+ * this equation will give nice 19 3% CPU compared to nice 0.
-+ */
-+static inline u64 prio_deadline_diff(int user_prio)
-+{
-+ return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
-+}
-+
-+static inline u64 task_deadline_diff(struct task_struct *p)
-+{
-+ return prio_deadline_diff(TASK_USER_PRIO(p));
-+}
-+
-+static inline u64 static_deadline_diff(int static_prio)
-+{
-+ return prio_deadline_diff(USER_PRIO(static_prio));
-+}
-+
-+static inline int ms_longest_deadline_diff(void)
-+{
-+ return NS_TO_MS(prio_deadline_diff(39));
-+}
-+
-+/*
-+ * The time_slice is only refilled when it is empty and that is when we set a
-+ * new deadline.
-+ */
-+static void time_slice_expired(struct task_struct *p)
-+{
-+ p->time_slice = timeslice();
-+ p->deadline = grq.niffies + task_deadline_diff(p);
-+}
-+
-+/*
-+ * Timeslices below RESCHED_US are considered as good as expired as there's no
-+ * point rescheduling when there's so little time left. SCHED_BATCH tasks
-+ * have been flagged be not latency sensitive and likely to be fully CPU
-+ * bound so every time they're rescheduled they have their time_slice
-+ * refilled, but get a new later deadline to have little effect on
-+ * SCHED_NORMAL tasks.
-+
-+ */
-+static inline void check_deadline(struct task_struct *p)
-+{
-+ if (p->time_slice < RESCHED_US || batch_task(p))
-+ time_slice_expired(p);
-+}
-+
-+/*
-+ * O(n) lookup of all tasks in the global runqueue. The real brainfuck
-+ * of lock contention and O(n). It's not really O(n) as only the queued,
-+ * but not running tasks are scanned, and is O(n) queued in the worst case
-+ * scenario only because the right task can be found before scanning all of
-+ * them.
-+ * Tasks are selected in this order:
-+ * Real time tasks are selected purely by their static priority and in the
-+ * order they were queued, so the lowest value idx, and the first queued task
-+ * of that priority value is chosen.
-+ * If no real time tasks are found, the SCHED_ISO priority is checked, and
-+ * all SCHED_ISO tasks have the same priority value, so they're selected by
-+ * the earliest deadline value.
-+ * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the
-+ * earliest deadline.
-+ * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are
-+ * selected by the earliest deadline.
-+ */
-+static inline struct
-+task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle)
-+{
-+ u64 dl, earliest_deadline = 0; /* Initialise to silence compiler */
-+ struct task_struct *p, *edt = idle;
-+ unsigned int cpu = cpu_of(rq);
-+ struct list_head *queue;
-+ int idx = 0;
-+
-+retry:
-+ idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx);
-+ if (idx >= PRIO_LIMIT)
-+ goto out;
-+ queue = grq.queue + idx;
-+ list_for_each_entry(p, queue, run_list) {
-+ /* Make sure cpu affinity is ok */
-+ if (needs_other_cpu(p, cpu))
-+ continue;
-+ if (idx < MAX_RT_PRIO) {
-+ /* We found an rt task */
-+ edt = p;
-+ goto out_take;
-+ }
-+
-+ dl = p->deadline + cache_distance(task_rq(p), rq, p);
-+
-+ /*
-+ * No rt tasks. Find the earliest deadline task. Now we're in
-+ * O(n) territory. This is what we silenced the compiler for:
-+ * edt will always start as idle.
-+ */
-+ if (edt == idle ||
-+ deadline_before(dl, earliest_deadline)) {
-+ earliest_deadline = dl;
-+ edt = p;
-+ }
-+ }
-+ if (edt == idle) {
-+ if (++idx < PRIO_LIMIT)
-+ goto retry;
-+ goto out;
-+ }
-+out_take:
-+ take_task(rq, edt);
-+out:
-+ return edt;
-+}
-+
-+/*
-+ * Print scheduling while atomic bug:
-+ */
-+static noinline void __schedule_bug(struct task_struct *prev)
-+{
-+ struct pt_regs *regs = get_irq_regs();
-+
-+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
-+ prev->comm, prev->pid, preempt_count());
-+
-+ debug_show_held_locks(prev);
-+ print_modules();
-+ if (irqs_disabled())
-+ print_irqtrace_events(prev);
-+
-+ if (regs)
-+ show_regs(regs);
-+ else
-+ dump_stack();
-+}
-+
-+/*
-+ * Various schedule()-time debugging checks and statistics:
-+ */
-+static inline void schedule_debug(struct task_struct *prev)
-+{
-+ /*
-+ * Test if we are atomic. Since do_exit() needs to call into
-+ * schedule() atomically, we ignore that path for now.
-+ * Otherwise, whine if we are scheduling when we should not be.
-+ */
-+ if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
-+ __schedule_bug(prev);
-+
-+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-+
-+ schedstat_inc(this_rq(), sched_count);
-+#ifdef CONFIG_SCHEDSTATS
-+ if (unlikely(prev->lock_depth >= 0)) {
-+ schedstat_inc(this_rq(), bkl_count);
-+ schedstat_inc(prev, sched_info.bkl_count);
-+ }
-+#endif
-+}
-+
-+/*
-+ * The currently running task's information is all stored in rq local data
-+ * which is only modified by the local CPU, thereby allowing the data to be
-+ * changed without grabbing the grq lock.
-+ */
-+static inline void set_rq_task(struct rq *rq, struct task_struct *p)
-+{
-+ rq->rq_time_slice = p->time_slice;
-+ rq->rq_deadline = p->deadline;
-+ rq->rq_last_ran = p->last_ran;
-+ rq->rq_policy = p->policy;
-+ rq->rq_prio = p->prio;
-+ if (p != rq->idle)
-+ rq->rq_running = 1;
-+ else
-+ rq->rq_running = 0;
-+}
-+
-+static void reset_rq_task(struct rq *rq, struct task_struct *p)
-+{
-+ rq->rq_policy = p->policy;
-+ rq->rq_prio = p->prio;
-+}
-+
-+/*
-+ * schedule() is the main scheduler function.
-+ */
-+asmlinkage void __sched schedule(void)
-+{
-+ struct task_struct *prev, *next, *idle;
-+ unsigned long *switch_count;
-+ int deactivate, cpu;
-+ struct rq *rq;
-+
-+need_resched:
-+ preempt_disable();
-+
-+ cpu = smp_processor_id();
-+ rq = cpu_rq(cpu);
-+ idle = rq->idle;
-+ rcu_note_context_switch(cpu);
-+ prev = rq->curr;
-+
-+ release_kernel_lock(prev);
-+need_resched_nonpreemptible:
-+
-+ deactivate = 0;
-+ schedule_debug(prev);
-+
-+ grq_lock_irq();
-+ update_clocks(rq);
-+ update_cpu_clock(rq, prev, 0);
-+ if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
-+ rq->dither = 0;
-+ else
-+ rq->dither = 1;
-+
-+ clear_tsk_need_resched(prev);
-+
-+ switch_count = &prev->nivcsw;
-+ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-+ if (unlikely(signal_pending_state(prev->state, prev))) {
-+ prev->state = TASK_RUNNING;
-+ } else {
-+ deactivate = 1;
-+ /*
-+ * If a worker is going to sleep, notify and
-+ * ask workqueue whether it wants to wake up a
-+ * task to maintain concurrency. If so, wake
-+ * up the task.
-+ */
-+ if (prev->flags & PF_WQ_WORKER) {
-+ struct task_struct *to_wakeup;
-+
-+ to_wakeup = wq_worker_sleeping(prev, cpu);
-+ if (to_wakeup) {
-+ /* This shouldn't happen, but does */
-+ if (unlikely(to_wakeup == prev))
-+ deactivate = 0;
-+ else
-+ try_to_wake_up_local(to_wakeup);
-+ }
-+ }
-+ }
-+ switch_count = &prev->nvcsw;
-+ }
-+
-+ if (prev != idle) {
-+ /* Update all the information stored on struct rq */
-+ prev->time_slice = rq->rq_time_slice;
-+ prev->deadline = rq->rq_deadline;
-+ check_deadline(prev);
-+ prev->last_ran = rq->clock;
-+
-+ /* Task changed affinity off this CPU */
-+ if (needs_other_cpu(prev, cpu))
-+ resched_suitable_idle(prev);
-+ else if (!deactivate) {
-+ if (!queued_notrunning()) {
-+ /*
-+ * We now know prev is the only thing that is
-+ * awaiting CPU so we can bypass rechecking for
-+ * the earliest deadline task and just run it
-+ * again.
-+ */
-+ grq_unlock_irq();
-+ goto rerun_prev_unlocked;
-+ } else {
-+ /*
-+ * If prev got kicked off by a task that has to
-+ * run on this CPU for affinity reasons then
-+ * there may be an idle CPU it can go to.
-+ */
-+ resched_suitable_idle(prev);
-+ }
-+ }
-+ return_task(prev, deactivate);
-+ }
-+
-+ if (unlikely(!queued_notrunning())) {
-+ /*
-+ * This CPU is now truly idle as opposed to when idle is
-+ * scheduled as a high priority task in its own right.
-+ */
-+ next = idle;
-+ schedstat_inc(rq, sched_goidle);
-+ set_cpuidle_map(cpu);
-+ } else {
-+ next = earliest_deadline_task(rq, idle);
-+ prefetch(next);
-+ prefetch_stack(next);
-+ clear_cpuidle_map(cpu);
-+ }
-+
-+ if (likely(prev != next)) {
-+ sched_info_switch(prev, next);
-+ perf_event_task_sched_out(prev, next);
-+
-+ set_rq_task(rq, next);
-+ grq.nr_switches++;
-+ prev->oncpu = 0;
-+ next->oncpu = 1;
-+ rq->curr = next;
-+ ++*switch_count;
-+
-+ context_switch(rq, prev, next); /* unlocks the grq */
-+ /*
-+ * The context switch have flipped the stack from under us
-+ * and restored the local variables which were saved when
-+ * this task called schedule() in the past. prev == current
-+ * is still correct, but it can be moved to another cpu/rq.
-+ */
-+ cpu = smp_processor_id();
-+ rq = cpu_rq(cpu);
-+ idle = rq->idle;
-+ } else
-+ grq_unlock_irq();
-+
-+rerun_prev_unlocked:
-+ if (unlikely(reacquire_kernel_lock(prev)))
-+ goto need_resched_nonpreemptible;
-+
-+ preempt_enable_no_resched();
-+ if (need_resched())
-+ goto need_resched;
-+}
-+EXPORT_SYMBOL(schedule);
-+
-+#ifdef CONFIG_SMP
-+int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
-+{
-+ unsigned int cpu;
-+ struct rq *rq;
-+
-+#ifdef CONFIG_DEBUG_PAGEALLOC
-+ /*
-+ * Need to access the cpu field knowing that
-+ * DEBUG_PAGEALLOC could have unmapped it if
-+ * the mutex owner just released it and exited.
-+ */
-+ if (probe_kernel_address(&owner->cpu, cpu))
-+ return 0;
-+#else
-+ cpu = owner->cpu;
-+#endif
-+
-+ /*
-+ * Even if the access succeeded (likely case),
-+ * the cpu field may no longer be valid.
-+ */
-+ if (cpu >= nr_cpumask_bits)
-+ return 0;
-+
-+ /*
-+ * We need to validate that we can do a
-+ * get_cpu() and that we have the percpu area.
-+ */
-+ if (!cpu_online(cpu))
-+ return 0;
-+
-+ rq = cpu_rq(cpu);
-+
-+ for (;;) {
-+ /*
-+ * Owner changed, break to re-assess state.
-+ */
-+ if (lock->owner != owner)
-+ break;
-+
-+ /*
-+ * Is that owner really running on that cpu?
-+ */
-+ if (task_thread_info(rq->curr) != owner || need_resched())
-+ return 0;
-+
-+ cpu_relax();
-+ }
-+
-+ return 1;
-+}
-+#endif
-+
-+#ifdef CONFIG_PREEMPT
-+/*
-+ * this is the entry point to schedule() from in-kernel preemption
-+ * off of preempt_enable. Kernel preemptions off return from interrupt
-+ * occur there and call schedule directly.
-+ */
-+asmlinkage void __sched notrace preempt_schedule(void)
-+{
-+ struct thread_info *ti = current_thread_info();
-+
-+ /*
-+ * If there is a non-zero preempt_count or interrupts are disabled,
-+ * we do not want to preempt the current task. Just return..
-+ */
-+ if (likely(ti->preempt_count || irqs_disabled()))
-+ return;
-+
-+ do {
-+ add_preempt_count_notrace(PREEMPT_ACTIVE);
-+ schedule();
-+ sub_preempt_count_notrace(PREEMPT_ACTIVE);
-+
-+ /*
-+ * Check again in case we missed a preemption opportunity
-+ * between schedule and now.
-+ */
-+ barrier();
-+ } while (need_resched());
-+}
-+EXPORT_SYMBOL(preempt_schedule);
-+
-+/*
-+ * this is the entry point to schedule() from kernel preemption
-+ * off of irq context.
-+ * Note, that this is called and return with irqs disabled. This will
-+ * protect us against recursive calling from irq.
-+ */
-+asmlinkage void __sched preempt_schedule_irq(void)
-+{
-+ struct thread_info *ti = current_thread_info();
-+
-+ /* Catch callers which need to be fixed */
-+ BUG_ON(ti->preempt_count || !irqs_disabled());
-+
-+ do {
-+ add_preempt_count(PREEMPT_ACTIVE);
-+ local_irq_enable();
-+ schedule();
-+ local_irq_disable();
-+ sub_preempt_count(PREEMPT_ACTIVE);
-+
-+ /*
-+ * Check again in case we missed a preemption opportunity
-+ * between schedule and now.
-+ */
-+ barrier();
-+ } while (need_resched());
-+}
-+
-+#endif /* CONFIG_PREEMPT */
-+
-+int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
-+ void *key)
-+{
-+ return try_to_wake_up(curr->private, mode, wake_flags);
-+}
-+EXPORT_SYMBOL(default_wake_function);
-+
-+/*
-+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
-+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
-+ * number) then we wake all the non-exclusive tasks and one exclusive task.
-+ *
-+ * There are circumstances in which we can try to wake a task which has already
-+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
-+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
-+ */
-+static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-+ int nr_exclusive, int wake_flags, void *key)
-+{
-+ struct list_head *tmp, *next;
-+
-+ list_for_each_safe(tmp, next, &q->task_list) {
-+ wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
-+ unsigned int flags = curr->flags;
-+
-+ if (curr->func(curr, mode, wake_flags, key) &&
-+ (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
-+ break;
-+ }
-+}
-+
-+/**
-+ * __wake_up - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ * @key: is directly passed to the wakeup function
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void __wake_up(wait_queue_head_t *q, unsigned int mode,
-+ int nr_exclusive, void *key)
-+{
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __wake_up_common(q, mode, nr_exclusive, 0, key);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL(__wake_up);
-+
-+/*
-+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
-+ */
-+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
-+{
-+ __wake_up_common(q, mode, 1, 0, NULL);
-+}
-+EXPORT_SYMBOL_GPL(__wake_up_locked);
-+
-+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
-+{
-+ __wake_up_common(q, mode, 1, 0, key);
-+}
-+
-+/**
-+ * __wake_up_sync_key - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ * @key: opaque value to be passed to wakeup targets
-+ *
-+ * The sync wakeup differs that the waker knows that it will schedule
-+ * away soon, so while the target thread will be woken up, it will not
-+ * be migrated to another CPU - ie. the two threads are 'synchronised'
-+ * with each other. This can prevent needless bouncing between CPUs.
-+ *
-+ * On UP it can prevent extra preemption.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
-+ int nr_exclusive, void *key)
-+{
-+ unsigned long flags;
-+ int wake_flags = WF_SYNC;
-+
-+ if (unlikely(!q))
-+ return;
-+
-+ if (unlikely(!nr_exclusive))
-+ wake_flags = 0;
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL_GPL(__wake_up_sync_key);
-+
-+/**
-+ * __wake_up_sync - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ *
-+ * The sync wakeup differs that the waker knows that it will schedule
-+ * away soon, so while the target thread will be woken up, it will not
-+ * be migrated to another CPU - ie. the two threads are 'synchronised'
-+ * with each other. This can prevent needless bouncing between CPUs.
-+ *
-+ * On UP it can prevent extra preemption.
-+ */
-+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
-+{
-+ unsigned long flags;
-+ int sync = 1;
-+
-+ if (unlikely(!q))
-+ return;
-+
-+ if (unlikely(!nr_exclusive))
-+ sync = 0;
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __wake_up_common(q, mode, nr_exclusive, sync, NULL);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
-+
-+/**
-+ * complete: - signals a single thread waiting on this completion
-+ * @x: holds the state of this particular completion
-+ *
-+ * This will wake up a single thread waiting on this completion. Threads will be
-+ * awakened in the same order in which they were queued.
-+ *
-+ * See also complete_all(), wait_for_completion() and related routines.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void complete(struct completion *x)
-+{
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&x->wait.lock, flags);
-+ x->done++;
-+ __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
-+ spin_unlock_irqrestore(&x->wait.lock, flags);
-+}
-+EXPORT_SYMBOL(complete);
-+
-+/**
-+ * complete_all: - signals all threads waiting on this completion
-+ * @x: holds the state of this particular completion
-+ *
-+ * This will wake up all threads waiting on this particular completion event.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void complete_all(struct completion *x)
-+{
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&x->wait.lock, flags);
-+ x->done += UINT_MAX/2;
-+ __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
-+ spin_unlock_irqrestore(&x->wait.lock, flags);
-+}
-+EXPORT_SYMBOL(complete_all);
-+
-+static inline long __sched
-+do_wait_for_common(struct completion *x, long timeout, int state)
-+{
-+ if (!x->done) {
-+ DECLARE_WAITQUEUE(wait, current);
-+
-+ __add_wait_queue_tail_exclusive(&x->wait, &wait);
-+ do {
-+ if (signal_pending_state(state, current)) {
-+ timeout = -ERESTARTSYS;
-+ break;
-+ }
-+ __set_current_state(state);
-+ spin_unlock_irq(&x->wait.lock);
-+ timeout = schedule_timeout(timeout);
-+ spin_lock_irq(&x->wait.lock);
-+ } while (!x->done && timeout);
-+ __remove_wait_queue(&x->wait, &wait);
-+ if (!x->done)
-+ return timeout;
-+ }
-+ x->done--;
-+ return timeout ?: 1;
-+}
-+
-+static long __sched
-+wait_for_common(struct completion *x, long timeout, int state)
-+{
-+ might_sleep();
-+
-+ spin_lock_irq(&x->wait.lock);
-+ timeout = do_wait_for_common(x, timeout, state);
-+ spin_unlock_irq(&x->wait.lock);
-+ return timeout;
-+}
-+
-+/**
-+ * wait_for_completion: - waits for completion of a task
-+ * @x: holds the state of this particular completion
-+ *
-+ * This waits to be signaled for completion of a specific task. It is NOT
-+ * interruptible and there is no timeout.
-+ *
-+ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
-+ * and interrupt capability. Also see complete().
-+ */
-+void __sched wait_for_completion(struct completion *x)
-+{
-+ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion);
-+
-+/**
-+ * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
-+ * @x: holds the state of this particular completion
-+ * @timeout: timeout value in jiffies
-+ *
-+ * This waits for either a completion of a specific task to be signaled or for a
-+ * specified timeout to expire. The timeout is in jiffies. It is not
-+ * interruptible.
-+ */
-+unsigned long __sched
-+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
-+{
-+ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_timeout);
-+
-+/**
-+ * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
-+ * @x: holds the state of this particular completion
-+ *
-+ * This waits for completion of a specific task to be signaled. It is
-+ * interruptible.
-+ */
-+int __sched wait_for_completion_interruptible(struct completion *x)
-+{
-+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
-+ if (t == -ERESTARTSYS)
-+ return t;
-+ return 0;
-+}
-+EXPORT_SYMBOL(wait_for_completion_interruptible);
-+
-+/**
-+ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
-+ * @x: holds the state of this particular completion
-+ * @timeout: timeout value in jiffies
-+ *
-+ * This waits for either a completion of a specific task to be signaled or for a
-+ * specified timeout to expire. It is interruptible. The timeout is in jiffies.
-+ */
-+unsigned long __sched
-+wait_for_completion_interruptible_timeout(struct completion *x,
-+ unsigned long timeout)
-+{
-+ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
-+
-+/**
-+ * wait_for_completion_killable: - waits for completion of a task (killable)
-+ * @x: holds the state of this particular completion
-+ *
-+ * This waits to be signaled for completion of a specific task. It can be
-+ * interrupted by a kill signal.
-+ */
-+int __sched wait_for_completion_killable(struct completion *x)
-+{
-+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
-+ if (t == -ERESTARTSYS)
-+ return t;
-+ return 0;
-+}
-+EXPORT_SYMBOL(wait_for_completion_killable);
-+
-+/**
-+ * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
-+ * @x: holds the state of this particular completion
-+ * @timeout: timeout value in jiffies
-+ *
-+ * This waits for either a completion of a specific task to be
-+ * signaled or for a specified timeout to expire. It can be
-+ * interrupted by a kill signal. The timeout is in jiffies.
-+ */
-+unsigned long __sched
-+wait_for_completion_killable_timeout(struct completion *x,
-+ unsigned long timeout)
-+{
-+ return wait_for_common(x, timeout, TASK_KILLABLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_killable_timeout);
-+
-+/**
-+ * try_wait_for_completion - try to decrement a completion without blocking
-+ * @x: completion structure
-+ *
-+ * Returns: 0 if a decrement cannot be done without blocking
-+ * 1 if a decrement succeeded.
-+ *
-+ * If a completion is being used as a counting completion,
-+ * attempt to decrement the counter without blocking. This
-+ * enables us to avoid waiting if the resource the completion
-+ * is protecting is not available.
-+ */
-+bool try_wait_for_completion(struct completion *x)
-+{
-+ unsigned long flags;
-+ int ret = 1;
-+
-+ spin_lock_irqsave(&x->wait.lock, flags);
-+ if (!x->done)
-+ ret = 0;
-+ else
-+ x->done--;
-+ spin_unlock_irqrestore(&x->wait.lock, flags);
-+ return ret;
-+}
-+EXPORT_SYMBOL(try_wait_for_completion);
-+
-+/**
-+ * completion_done - Test to see if a completion has any waiters
-+ * @x: completion structure
-+ *
-+ * Returns: 0 if there are waiters (wait_for_completion() in progress)
-+ * 1 if there are no waiters.
-+ *
-+ */
-+bool completion_done(struct completion *x)
-+{
-+ unsigned long flags;
-+ int ret = 1;
-+
-+ spin_lock_irqsave(&x->wait.lock, flags);
-+ if (!x->done)
-+ ret = 0;
-+ spin_unlock_irqrestore(&x->wait.lock, flags);
-+ return ret;
-+}
-+EXPORT_SYMBOL(completion_done);
-+
-+static long __sched
-+sleep_on_common(wait_queue_head_t *q, int state, long timeout)
-+{
-+ unsigned long flags;
-+ wait_queue_t wait;
-+
-+ init_waitqueue_entry(&wait, current);
-+
-+ __set_current_state(state);
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __add_wait_queue(q, &wait);
-+ spin_unlock(&q->lock);
-+ timeout = schedule_timeout(timeout);
-+ spin_lock_irq(&q->lock);
-+ __remove_wait_queue(q, &wait);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+
-+ return timeout;
-+}
-+
-+void __sched interruptible_sleep_on(wait_queue_head_t *q)
-+{
-+ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-+}
-+EXPORT_SYMBOL(interruptible_sleep_on);
-+
-+long __sched
-+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
-+{
-+ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
-+}
-+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
-+
-+void __sched sleep_on(wait_queue_head_t *q)
-+{
-+ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-+}
-+EXPORT_SYMBOL(sleep_on);
-+
-+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
-+{
-+ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
-+}
-+EXPORT_SYMBOL(sleep_on_timeout);
-+
-+#ifdef CONFIG_RT_MUTEXES
-+
-+/*
-+ * rt_mutex_setprio - set the current priority of a task
-+ * @p: task
-+ * @prio: prio value (kernel-internal form)
-+ *
-+ * This function changes the 'effective' priority of a task. It does
-+ * not touch ->normal_prio like __setscheduler().
-+ *
-+ * Used by the rt_mutex code to implement priority inheritance logic.
-+ */
-+void rt_mutex_setprio(struct task_struct *p, int prio)
-+{
-+ unsigned long flags;
-+ int queued, oldprio;
-+ struct rq *rq;
-+
-+ BUG_ON(prio < 0 || prio > MAX_PRIO);
-+
-+ rq = task_grq_lock(p, &flags);
-+
-+ trace_sched_pi_setprio(p, prio);
-+ oldprio = p->prio;
-+ queued = task_queued(p);
-+ if (queued)
-+ dequeue_task(p);
-+ p->prio = prio;
-+ if (task_running(p) && prio > oldprio)
-+ resched_task(p);
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p, rq);
-+ }
-+
-+ task_grq_unlock(&flags);
-+}
-+
-+#endif
-+
-+/*
-+ * Adjust the deadline for when the priority is to change, before it's
-+ * changed.
-+ */
-+static inline void adjust_deadline(struct task_struct *p, int new_prio)
-+{
-+ p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
-+}
-+
-+void set_user_nice(struct task_struct *p, long nice)
-+{
-+ int queued, new_static, old_static;
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
-+ return;
-+ new_static = NICE_TO_PRIO(nice);
-+ /*
-+ * We have to be careful, if called from sys_setpriority(),
-+ * the task might be in the middle of scheduling on another CPU.
-+ */
-+ rq = time_task_grq_lock(p, &flags);
-+ /*
-+ * The RT priorities are set via sched_setscheduler(), but we still
-+ * allow the 'normal' nice value to be set - but as expected
-+ * it wont have any effect on scheduling until the task is
-+ * not SCHED_NORMAL/SCHED_BATCH:
-+ */
-+ if (has_rt_policy(p)) {
-+ p->static_prio = new_static;
-+ goto out_unlock;
-+ }
-+ queued = task_queued(p);
-+ if (queued)
-+ dequeue_task(p);
-+
-+ adjust_deadline(p, new_static);
-+ old_static = p->static_prio;
-+ p->static_prio = new_static;
-+ p->prio = effective_prio(p);
-+
-+ if (queued) {
-+ enqueue_task(p);
-+ if (new_static < old_static)
-+ try_preempt(p, rq);
-+ } else if (task_running(p)) {
-+ reset_rq_task(rq, p);
-+ if (old_static < new_static)
-+ resched_task(p);
-+ }
-+out_unlock:
-+ task_grq_unlock(&flags);
-+}
-+EXPORT_SYMBOL(set_user_nice);
-+
-+/*
-+ * can_nice - check if a task can reduce its nice value
-+ * @p: task
-+ * @nice: nice value
-+ */
-+int can_nice(const struct task_struct *p, const int nice)
-+{
-+ /* convert nice value [19,-20] to rlimit style value [1,40] */
-+ int nice_rlim = 20 - nice;
-+
-+ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
-+ capable(CAP_SYS_NICE));
-+}
-+
-+#ifdef __ARCH_WANT_SYS_NICE
-+
-+/*
-+ * sys_nice - change the priority of the current process.
-+ * @increment: priority increment
-+ *
-+ * sys_setpriority is a more generic, but much slower function that
-+ * does similar things.
-+ */
-+SYSCALL_DEFINE1(nice, int, increment)
-+{
-+ long nice, retval;
-+
-+ /*
-+ * Setpriority might change our priority at the same moment.
-+ * We don't have to worry. Conceptually one call occurs first
-+ * and we have a single winner.
-+ */
-+ if (increment < -40)
-+ increment = -40;
-+ if (increment > 40)
-+ increment = 40;
-+
-+ nice = TASK_NICE(current) + increment;
-+ if (nice < -20)
-+ nice = -20;
-+ if (nice > 19)
-+ nice = 19;
-+
-+ if (increment < 0 && !can_nice(current, nice))
-+ return -EPERM;
-+
-+ retval = security_task_setnice(current, nice);
-+ if (retval)
-+ return retval;
-+
-+ set_user_nice(current, nice);
-+ return 0;
-+}
-+
-+#endif
-+
-+/**
-+ * task_prio - return the priority value of a given task.
-+ * @p: the task in question.
-+ *
-+ * This is the priority value as seen by users in /proc.
-+ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
-+ * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO).
-+ */
-+int task_prio(const struct task_struct *p)
-+{
-+ int delta, prio = p->prio - MAX_RT_PRIO;
-+
-+ /* rt tasks and iso tasks */
-+ if (prio <= 0)
-+ goto out;
-+
-+ /* Convert to ms to avoid overflows */
-+ delta = NS_TO_MS(p->deadline - grq.niffies);
-+ delta = delta * 40 / ms_longest_deadline_diff();
-+ if (delta > 0 && delta <= 80)
-+ prio += delta;
-+ if (idleprio_task(p))
-+ prio += 40;
-+out:
-+ return prio;
-+}
-+
-+/**
-+ * task_nice - return the nice value of a given task.
-+ * @p: the task in question.
-+ */
-+int task_nice(const struct task_struct *p)
-+{
-+ return TASK_NICE(p);
-+}
-+EXPORT_SYMBOL_GPL(task_nice);
-+
-+/**
-+ * idle_cpu - is a given cpu idle currently?
-+ * @cpu: the processor in question.
-+ */
-+int idle_cpu(int cpu)
-+{
-+ return cpu_curr(cpu) == cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * idle_task - return the idle task for a given cpu.
-+ * @cpu: the processor in question.
-+ */
-+struct task_struct *idle_task(int cpu)
-+{
-+ return cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * find_process_by_pid - find a process with a matching PID value.
-+ * @pid: the pid in question.
-+ */
-+static inline struct task_struct *find_process_by_pid(pid_t pid)
-+{
-+ return pid ? find_task_by_vpid(pid) : current;
-+}
-+
-+/* Actually do priority change: must hold grq lock. */
-+static void
-+__setscheduler(struct task_struct *p, struct rq *rq, int policy, int prio)
-+{
-+ int oldrtprio, oldprio;
-+
-+ BUG_ON(task_queued(p));
-+
-+ p->policy = policy;
-+ oldrtprio = p->rt_priority;
-+ p->rt_priority = prio;
-+ p->normal_prio = normal_prio(p);
-+ oldprio = p->prio;
-+ /* we are holding p->pi_lock already */
-+ p->prio = rt_mutex_getprio(p);
-+ if (task_running(p)) {
-+ reset_rq_task(rq, p);
-+ /* Resched only if we might now be preempted */
-+ if (p->prio > oldprio || p->rt_priority > oldrtprio)
-+ resched_task(p);
-+ }
-+}
-+
-+/*
-+ * check the target process has a UID that matches the current process's
-+ */
-+static bool check_same_owner(struct task_struct *p)
-+{
-+ const struct cred *cred = current_cred(), *pcred;
-+ bool match;
-+
-+ rcu_read_lock();
-+ pcred = __task_cred(p);
-+ match = (cred->euid == pcred->euid ||
-+ cred->euid == pcred->uid);
-+ rcu_read_unlock();
-+ return match;
-+}
-+
-+static int __sched_setscheduler(struct task_struct *p, int policy,
-+ struct sched_param *param, bool user)
-+{
-+ struct sched_param zero_param = { .sched_priority = 0 };
-+ int queued, retval, oldpolicy = -1;
-+ unsigned long flags, rlim_rtprio = 0;
-+ int reset_on_fork;
-+ struct rq *rq;
-+
-+ /* may grab non-irq protected spin_locks */
-+ BUG_ON(in_interrupt());
-+
-+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
-+ unsigned long lflags;
-+
-+ if (!lock_task_sighand(p, &lflags))
-+ return -ESRCH;
-+ rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
-+ unlock_task_sighand(p, &lflags);
-+ if (rlim_rtprio)
-+ goto recheck;
-+ /*
-+ * If the caller requested an RT policy without having the
-+ * necessary rights, we downgrade the policy to SCHED_ISO.
-+ * We also set the parameter to zero to pass the checks.
-+ */
-+ policy = SCHED_ISO;
-+ param = &zero_param;
-+ }
-+recheck:
-+ /* double check policy once rq lock held */
-+ if (policy < 0) {
-+ reset_on_fork = p->sched_reset_on_fork;
-+ policy = oldpolicy = p->policy;
-+ } else {
-+ reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
-+ policy &= ~SCHED_RESET_ON_FORK;
-+
-+ if (!SCHED_RANGE(policy))
-+ return -EINVAL;
-+ }
-+
-+ /*
-+ * Valid priorities for SCHED_FIFO and SCHED_RR are
-+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
-+ * SCHED_BATCH is 0.
-+ */
-+ if (param->sched_priority < 0 ||
-+ (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) ||
-+ (!p->mm && param->sched_priority > MAX_RT_PRIO - 1))
-+ return -EINVAL;
-+ if (is_rt_policy(policy) != (param->sched_priority != 0))
-+ return -EINVAL;
-+
-+ /*
-+ * Allow unprivileged RT tasks to decrease priority:
-+ */
-+ if (user && !capable(CAP_SYS_NICE)) {
-+ if (is_rt_policy(policy)) {
-+ unsigned long rlim_rtprio =
-+ task_rlimit(p, RLIMIT_RTPRIO);
-+
-+ /* can't set/change the rt policy */
-+ if (policy != p->policy && !rlim_rtprio)
-+ return -EPERM;
-+
-+ /* can't increase priority */
-+ if (param->sched_priority > p->rt_priority &&
-+ param->sched_priority > rlim_rtprio)
-+ return -EPERM;
-+ } else {
-+ switch (p->policy) {
-+ /*
-+ * Can only downgrade policies but not back to
-+ * SCHED_NORMAL
-+ */
-+ case SCHED_ISO:
-+ if (policy == SCHED_ISO)
-+ goto out;
-+ if (policy == SCHED_NORMAL)
-+ return -EPERM;
-+ break;
-+ case SCHED_BATCH:
-+ if (policy == SCHED_BATCH)
-+ goto out;
-+ if (policy != SCHED_IDLEPRIO)
-+ return -EPERM;
-+ break;
-+ case SCHED_IDLEPRIO:
-+ if (policy == SCHED_IDLEPRIO)
-+ goto out;
-+ return -EPERM;
-+ default:
-+ break;
-+ }
-+ }
-+
-+ /* can't change other user's priorities */
-+ if (!check_same_owner(p))
-+ return -EPERM;
-+
-+ /* Normal users shall not reset the sched_reset_on_fork flag */
-+ if (p->sched_reset_on_fork && !reset_on_fork)
-+ return -EPERM;
-+ }
-+
-+ if (user) {
-+ retval = security_task_setscheduler(p);
-+ if (retval)
-+ return retval;
-+ }
-+
-+ /*
-+ * make sure no PI-waiters arrive (or leave) while we are
-+ * changing the priority of the task:
-+ */
-+ raw_spin_lock_irqsave(&p->pi_lock, flags);
-+ /*
-+ * To be able to change p->policy safely, the apropriate
-+ * runqueue lock must be held.
-+ */
-+ rq = __task_grq_lock(p);
-+
-+ /*
-+ * Changing the policy of the stop threads its a very bad idea
-+ */
-+ if (p == rq->stop) {
-+ __task_grq_unlock();
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+ return -EINVAL;
-+ }
-+
-+ /* recheck policy now with rq lock held */
-+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
-+ policy = oldpolicy = -1;
-+ __task_grq_unlock();
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+ goto recheck;
-+ }
-+ update_clocks(rq);
-+ p->sched_reset_on_fork = reset_on_fork;
-+
-+ queued = task_queued(p);
-+ if (queued)
-+ dequeue_task(p);
-+ __setscheduler(p, rq, policy, param->sched_priority);
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p, rq);
-+ }
-+ __task_grq_unlock();
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+
-+ rt_mutex_adjust_pi(p);
-+out:
-+ return 0;
-+}
-+
-+/**
-+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * NOTE that the task may be already dead.
-+ */
-+int sched_setscheduler(struct task_struct *p, int policy,
-+ struct sched_param *param)
-+{
-+ return __sched_setscheduler(p, policy, param, true);
-+}
-+
-+EXPORT_SYMBOL_GPL(sched_setscheduler);
-+
-+/**
-+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * Just like sched_setscheduler, only don't bother checking if the
-+ * current context has permission. For example, this is needed in
-+ * stop_machine(): we create temporary high priority worker threads,
-+ * but our caller might not have that capability.
-+ */
-+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
-+ struct sched_param *param)
-+{
-+ return __sched_setscheduler(p, policy, param, false);
-+}
-+
-+static int
-+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-+{
-+ struct sched_param lparam;
-+ struct task_struct *p;
-+ int retval;
-+
-+ if (!param || pid < 0)
-+ return -EINVAL;
-+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
-+ return -EFAULT;
-+
-+ rcu_read_lock();
-+ retval = -ESRCH;
-+ p = find_process_by_pid(pid);
-+ if (p != NULL)
-+ retval = sched_setscheduler(p, policy, &lparam);
-+ rcu_read_unlock();
-+
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
-+ * @pid: the pid in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ */
-+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
-+ struct sched_param __user *param)
-+{
-+ /* negative values for policy are not valid */
-+ if (policy < 0)
-+ return -EINVAL;
-+
-+ return do_sched_setscheduler(pid, policy, param);
-+}
-+
-+/**
-+ * sys_sched_setparam - set/change the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the new RT priority.
-+ */
-+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+ return do_sched_setscheduler(pid, -1, param);
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
-+ * @pid: the pid in question.
-+ */
-+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-+{
-+ struct task_struct *p;
-+ int retval = -EINVAL;
-+
-+ if (pid < 0)
-+ goto out_nounlock;
-+
-+ retval = -ESRCH;
-+ rcu_read_lock();
-+ p = find_process_by_pid(pid);
-+ if (p) {
-+ retval = security_task_getscheduler(p);
-+ if (!retval)
-+ retval = p->policy;
-+ }
-+ rcu_read_unlock();
-+
-+out_nounlock:
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the RT priority.
-+ */
-+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+ struct sched_param lp;
-+ struct task_struct *p;
-+ int retval = -EINVAL;
-+
-+ if (!param || pid < 0)
-+ goto out_nounlock;
-+
-+ rcu_read_lock();
-+ p = find_process_by_pid(pid);
-+ retval = -ESRCH;
-+ if (!p)
-+ goto out_unlock;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ lp.sched_priority = p->rt_priority;
-+ rcu_read_unlock();
-+
-+ /*
-+ * This one might sleep, we cannot do it with a spinlock held ...
-+ */
-+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-+
-+out_nounlock:
-+ return retval;
-+
-+out_unlock:
-+ rcu_read_unlock();
-+ return retval;
-+}
-+
-+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-+{
-+ cpumask_var_t cpus_allowed, new_mask;
-+ struct task_struct *p;
-+ int retval;
-+
-+ get_online_cpus();
-+ rcu_read_lock();
-+
-+ p = find_process_by_pid(pid);
-+ if (!p) {
-+ rcu_read_unlock();
-+ put_online_cpus();
-+ return -ESRCH;
-+ }
-+
-+ /* Prevent p going away */
-+ get_task_struct(p);
-+ rcu_read_unlock();
-+
-+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
-+ retval = -ENOMEM;
-+ goto out_put_task;
-+ }
-+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
-+ retval = -ENOMEM;
-+ goto out_free_cpus_allowed;
-+ }
-+ retval = -EPERM;
-+ if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
-+ goto out_unlock;
-+
-+ retval = security_task_setscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ cpuset_cpus_allowed(p, cpus_allowed);
-+ cpumask_and(new_mask, in_mask, cpus_allowed);
-+again:
-+ retval = set_cpus_allowed_ptr(p, new_mask);
-+
-+ if (!retval) {
-+ cpuset_cpus_allowed(p, cpus_allowed);
-+ if (!cpumask_subset(new_mask, cpus_allowed)) {
-+ /*
-+ * We must have raced with a concurrent cpuset
-+ * update. Just reset the cpus_allowed to the
-+ * cpuset's cpus_allowed
-+ */
-+ cpumask_copy(new_mask, cpus_allowed);
-+ goto again;
-+ }
-+ }
-+out_unlock:
-+ free_cpumask_var(new_mask);
-+out_free_cpus_allowed:
-+ free_cpumask_var(cpus_allowed);
-+out_put_task:
-+ put_task_struct(p);
-+ put_online_cpus();
-+ return retval;
-+}
-+
-+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
-+ cpumask_t *new_mask)
-+{
-+ if (len < sizeof(cpumask_t)) {
-+ memset(new_mask, 0, sizeof(cpumask_t));
-+ } else if (len > sizeof(cpumask_t)) {
-+ len = sizeof(cpumask_t);
-+ }
-+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-+}
-+
-+
-+/**
-+ * sys_sched_setaffinity - set the cpu affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to the new cpu mask
-+ */
-+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
-+ unsigned long __user *, user_mask_ptr)
-+{
-+ cpumask_var_t new_mask;
-+ int retval;
-+
-+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
-+ if (retval == 0)
-+ retval = sched_setaffinity(pid, new_mask);
-+ free_cpumask_var(new_mask);
-+ return retval;
-+}
-+
-+long sched_getaffinity(pid_t pid, cpumask_t *mask)
-+{
-+ struct task_struct *p;
-+ unsigned long flags;
-+ struct rq *rq;
-+ int retval;
-+
-+ get_online_cpus();
-+ rcu_read_lock();
-+
-+ retval = -ESRCH;
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ goto out_unlock;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ rq = task_grq_lock(p, &flags);
-+ cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
-+ task_grq_unlock(&flags);
-+
-+out_unlock:
-+ rcu_read_unlock();
-+ put_online_cpus();
-+
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_getaffinity - get the cpu affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
-+ */
-+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
-+ unsigned long __user *, user_mask_ptr)
-+{
-+ int ret;
-+ cpumask_var_t mask;
-+
-+ if ((len * BITS_PER_BYTE) < nr_cpu_ids)
-+ return -EINVAL;
-+ if (len & (sizeof(unsigned long)-1))
-+ return -EINVAL;
-+
-+ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ ret = sched_getaffinity(pid, mask);
-+ if (ret == 0) {
-+ size_t retlen = min_t(size_t, len, cpumask_size());
-+
-+ if (copy_to_user(user_mask_ptr, mask, retlen))
-+ ret = -EFAULT;
-+ else
-+ ret = retlen;
-+ }
-+ free_cpumask_var(mask);
-+
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_yield - yield the current processor to other threads.
-+ *
-+ * This function yields the current CPU to other tasks. It does this by
-+ * scheduling away the current task. If it still has the earliest deadline
-+ * it will be scheduled again as the next task.
-+ */
-+SYSCALL_DEFINE0(sched_yield)
-+{
-+ struct task_struct *p;
-+ struct rq *rq;
-+
-+ p = current;
-+ rq = task_grq_lock_irq(p);
-+ schedstat_inc(rq, yld_count);
-+ requeue_task(p);
-+
-+ /*
-+ * Since we are going to call schedule() anyway, there's
-+ * no need to preempt or enable interrupts:
-+ */
-+ __release(grq.lock);
-+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
-+ do_raw_spin_unlock(&grq.lock);
-+ preempt_enable_no_resched();
-+
-+ schedule();
-+
-+ return 0;
-+}
-+
-+static inline int should_resched(void)
-+{
-+ return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
-+}
-+
-+static void __cond_resched(void)
-+{
-+ /* NOT a real fix but will make voluntary preempt work. 馬鹿な事 */
-+ if (unlikely(system_state != SYSTEM_RUNNING))
-+ return;
-+
-+ add_preempt_count(PREEMPT_ACTIVE);
-+ schedule();
-+ sub_preempt_count(PREEMPT_ACTIVE);
-+}
-+
-+int __sched _cond_resched(void)
-+{
-+ if (should_resched()) {
-+ __cond_resched();
-+ return 1;
-+ }
-+ return 0;
-+}
-+EXPORT_SYMBOL(_cond_resched);
-+
-+/*
-+ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
-+ * call schedule, and on return reacquire the lock.
-+ *
-+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
-+ * operations here to prevent schedule() from being called twice (once via
-+ * spin_unlock(), once by hand).
-+ */
-+int __cond_resched_lock(spinlock_t *lock)
-+{
-+ int resched = should_resched();
-+ int ret = 0;
-+
-+ lockdep_assert_held(lock);
-+
-+ if (spin_needbreak(lock) || resched) {
-+ spin_unlock(lock);
-+ if (resched)
-+ __cond_resched();
-+ else
-+ cpu_relax();
-+ ret = 1;
-+ spin_lock(lock);
-+ }
-+ return ret;
-+}
-+EXPORT_SYMBOL(__cond_resched_lock);
-+
-+int __sched __cond_resched_softirq(void)
-+{
-+ BUG_ON(!in_softirq());
-+
-+ if (should_resched()) {
-+ local_bh_enable();
-+ __cond_resched();
-+ local_bh_disable();
-+ return 1;
-+ }
-+ return 0;
-+}
-+EXPORT_SYMBOL(__cond_resched_softirq);
-+
-+/**
-+ * yield - yield the current processor to other threads.
-+ *
-+ * This is a shortcut for kernel-space yielding - it marks the
-+ * thread runnable and calls sys_sched_yield().
-+ */
-+void __sched yield(void)
-+{
-+ set_current_state(TASK_RUNNING);
-+ sys_sched_yield();
-+}
-+EXPORT_SYMBOL(yield);
-+
-+/*
-+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
-+ * that process accounting knows that this is a task in IO wait state.
-+ *
-+ * But don't do that if it is a deliberate, throttling IO wait (this task
-+ * has set its backing_dev_info: the queue against which it should throttle)
-+ */
-+void __sched io_schedule(void)
-+{
-+ struct rq *rq = raw_rq();
-+
-+ delayacct_blkio_start();
-+ atomic_inc(&rq->nr_iowait);
-+ current->in_iowait = 1;
-+ schedule();
-+ current->in_iowait = 0;
-+ atomic_dec(&rq->nr_iowait);
-+ delayacct_blkio_end();
-+}
-+EXPORT_SYMBOL(io_schedule);
-+
-+long __sched io_schedule_timeout(long timeout)
-+{
-+ struct rq *rq = raw_rq();
-+ long ret;
-+
-+ delayacct_blkio_start();
-+ atomic_inc(&rq->nr_iowait);
-+ current->in_iowait = 1;
-+ ret = schedule_timeout(timeout);
-+ current->in_iowait = 0;
-+ atomic_dec(&rq->nr_iowait);
-+ delayacct_blkio_end();
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_max - return maximum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * this syscall returns the maximum rt_priority that can be used
-+ * by a given scheduling class.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-+{
-+ int ret = -EINVAL;
-+
-+ switch (policy) {
-+ case SCHED_FIFO:
-+ case SCHED_RR:
-+ ret = MAX_USER_RT_PRIO-1;
-+ break;
-+ case SCHED_NORMAL:
-+ case SCHED_BATCH:
-+ case SCHED_ISO:
-+ case SCHED_IDLEPRIO:
-+ ret = 0;
-+ break;
-+ }
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_min - return minimum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * this syscall returns the minimum rt_priority that can be used
-+ * by a given scheduling class.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-+{
-+ int ret = -EINVAL;
-+
-+ switch (policy) {
-+ case SCHED_FIFO:
-+ case SCHED_RR:
-+ ret = 1;
-+ break;
-+ case SCHED_NORMAL:
-+ case SCHED_BATCH:
-+ case SCHED_ISO:
-+ case SCHED_IDLEPRIO:
-+ ret = 0;
-+ break;
-+ }
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_rr_get_interval - return the default timeslice of a process.
-+ * @pid: pid of the process.
-+ * @interval: userspace pointer to the timeslice value.
-+ *
-+ * this syscall writes the default timeslice value of a given process
-+ * into the user-space timespec buffer. A value of '0' means infinity.
-+ */
-+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
-+ struct timespec __user *, interval)
-+{
-+ struct task_struct *p;
-+ unsigned int time_slice;
-+ unsigned long flags;
-+ struct rq *rq;
-+ int retval;
-+ struct timespec t;
-+
-+ if (pid < 0)
-+ return -EINVAL;
-+
-+ retval = -ESRCH;
-+ rcu_read_lock();
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ goto out_unlock;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ rq = task_grq_lock(p, &flags);
-+ time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
-+ task_grq_unlock(&flags);
-+
-+ rcu_read_unlock();
-+ t = ns_to_timespec(time_slice);
-+ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-+ return retval;
-+
-+out_unlock:
-+ rcu_read_unlock();
-+ return retval;
-+}
-+
-+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
-+
-+void sched_show_task(struct task_struct *p)
-+{
-+ unsigned long free = 0;
-+ unsigned state;
-+
-+ state = p->state ? __ffs(p->state) + 1 : 0;
-+ printk(KERN_INFO "%-13.13s %c", p->comm,
-+ state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-+#if BITS_PER_LONG == 32
-+ if (state == TASK_RUNNING)
-+ printk(KERN_CONT " running ");
-+ else
-+ printk(KERN_CONT " %08lx ", thread_saved_pc(p));
-+#else
-+ if (state == TASK_RUNNING)
-+ printk(KERN_CONT " running task ");
-+ else
-+ printk(KERN_CONT " %016lx ", thread_saved_pc(p));
-+#endif
-+#ifdef CONFIG_DEBUG_STACK_USAGE
-+ free = stack_not_used(p);
-+#endif
-+ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
-+ task_pid_nr(p), task_pid_nr(p->real_parent),
-+ (unsigned long)task_thread_info(p)->flags);
-+
-+ show_stack(p, NULL);
-+}
-+
-+void show_state_filter(unsigned long state_filter)
-+{
-+ struct task_struct *g, *p;
-+
-+#if BITS_PER_LONG == 32
-+ printk(KERN_INFO
-+ " task PC stack pid father\n");
-+#else
-+ printk(KERN_INFO
-+ " task PC stack pid father\n");
-+#endif
-+ read_lock(&tasklist_lock);
-+ do_each_thread(g, p) {
-+ /*
-+ * reset the NMI-timeout, listing all files on a slow
-+ * console might take alot of time:
-+ */
-+ touch_nmi_watchdog();
-+ if (!state_filter || (p->state & state_filter))
-+ sched_show_task(p);
-+ } while_each_thread(g, p);
-+
-+ touch_all_softlockup_watchdogs();
-+
-+ read_unlock(&tasklist_lock);
-+ /*
-+ * Only show locks if all tasks are dumped:
-+ */
-+ if (!state_filter)
-+ debug_show_all_locks();
-+}
-+
-+/**
-+ * init_idle - set up an idle thread for a given CPU
-+ * @idle: task in question
-+ * @cpu: cpu the idle task belongs to
-+ *
-+ * NOTE: this function does not set the idle thread's NEED_RESCHED
-+ * flag, to make booting more robust.
-+ */
-+void init_idle(struct task_struct *idle, int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+
-+ time_grq_lock(rq, &flags);
-+ idle->last_ran = rq->clock;
-+ idle->state = TASK_RUNNING;
-+ /* Setting prio to illegal value shouldn't matter when never queued */
-+ idle->prio = PRIO_LIMIT;
-+ set_rq_task(rq, idle);
-+ idle->cpus_allowed = cpumask_of_cpu(cpu);
-+ /* Silence PROVE_RCU */
-+ rcu_read_lock();
-+ set_task_cpu(idle, cpu);
-+ rcu_read_unlock();
-+ rq->curr = rq->idle = idle;
-+ idle->oncpu = 1;
-+ set_cpuidle_map(cpu);
-+ grq_unlock_irqrestore(&flags);
-+
-+ /* Set the preempt count _outside_ the spinlocks! */
-+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
-+ task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
-+#else
-+ task_thread_info(idle)->preempt_count = 0;
-+#endif
-+ ftrace_graph_init_task(idle);
-+}
-+
-+/*
-+ * In a system that switches off the HZ timer nohz_cpu_mask
-+ * indicates which cpus entered this state. This is used
-+ * in the rcu update to wait only for active cpus. For system
-+ * which do not switch off the HZ timer nohz_cpu_mask should
-+ * always be CPU_BITS_NONE.
-+ */
-+cpumask_var_t nohz_cpu_mask;
-+
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_NO_HZ
-+void select_nohz_load_balancer(int stop_tick)
-+{
-+}
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+/**
-+ * lowest_flag_domain - Return lowest sched_domain containing flag.
-+ * @cpu: The cpu whose lowest level of sched domain is to
-+ * be returned.
-+ * @flag: The flag to check for the lowest sched_domain
-+ * for the given cpu.
-+ *
-+ * Returns the lowest sched_domain of a cpu which contains the given flag.
-+ */
-+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
-+{
-+ struct sched_domain *sd;
-+
-+ for_each_domain(cpu, sd)
-+ if (sd && (sd->flags & flag))
-+ break;
-+
-+ return sd;
-+}
-+
-+/**
-+ * for_each_flag_domain - Iterates over sched_domains containing the flag.
-+ * @cpu: The cpu whose domains we're iterating over.
-+ * @sd: variable holding the value of the power_savings_sd
-+ * for cpu.
-+ * @flag: The flag to filter the sched_domains to be iterated.
-+ *
-+ * Iterates over all the scheduler domains for a given cpu that has the 'flag'
-+ * set, starting from the lowest sched_domain to the highest.
-+ */
-+#define for_each_flag_domain(cpu, sd, flag) \
-+ for (sd = lowest_flag_domain(cpu, flag); \
-+ (sd && (sd->flags & flag)); sd = sd->parent)
-+
-+#endif /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
-+
-+static inline void resched_cpu(int cpu)
-+{
-+ unsigned long flags;
-+
-+ grq_lock_irqsave(&flags);
-+ resched_task(cpu_curr(cpu));
-+ grq_unlock_irqrestore(&flags);
-+}
-+
-+/*
-+ * In the semi idle case, use the nearest busy cpu for migrating timers
-+ * from an idle cpu. This is good for power-savings.
-+ *
-+ * We don't do similar optimization for completely idle system, as
-+ * selecting an idle cpu will add more delays to the timers than intended
-+ * (as that cpu's timer base may not be uptodate wrt jiffies etc).
-+ */
-+int get_nohz_timer_target(void)
-+{
-+ int cpu = smp_processor_id();
-+ int i;
-+ struct sched_domain *sd;
-+
-+ for_each_domain(cpu, sd) {
-+ for_each_cpu(i, sched_domain_span(sd))
-+ if (!idle_cpu(i))
-+ return i;
-+ }
-+ return cpu;
-+}
-+
-+/*
-+ * When add_timer_on() enqueues a timer into the timer wheel of an
-+ * idle CPU then this timer might expire before the next timer event
-+ * which is scheduled to wake up that CPU. In case of a completely
-+ * idle system the next event might even be infinite time into the
-+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
-+ * leaves the inner idle loop so the newly added timer is taken into
-+ * account when the CPU goes back to idle and evaluates the timer
-+ * wheel for the next timer event.
-+ */
-+void wake_up_idle_cpu(int cpu)
-+{
-+ struct task_struct *idle;
-+ struct rq *rq;
-+
-+ if (cpu == smp_processor_id())
-+ return;
-+
-+ rq = cpu_rq(cpu);
-+ idle = rq->idle;
-+
-+ /*
-+ * This is safe, as this function is called with the timer
-+ * wheel base lock of (cpu) held. When the CPU is on the way
-+ * to idle and has not yet set rq->curr to idle then it will
-+ * be serialised on the timer wheel base lock and take the new
-+ * timer into account automatically.
-+ */
-+ if (unlikely(rq->curr != idle))
-+ return;
-+
-+ /*
-+ * We can set TIF_RESCHED on the idle task of the other CPU
-+ * lockless. The worst case is that the other CPU runs the
-+ * idle task through an additional NOOP schedule()
-+ */
-+ set_tsk_need_resched(idle);
-+
-+ /* NEED_RESCHED must be visible before we test polling */
-+ smp_mb();
-+ if (!tsk_is_polling(idle))
-+ smp_send_reschedule(cpu);
-+}
-+
-+#endif /* CONFIG_NO_HZ */
-+
-+/*
-+ * Change a given task's CPU affinity. Migrate the thread to a
-+ * proper CPU and schedule it away if the CPU it's executing on
-+ * is removed from the allowed bitmask.
-+ *
-+ * NOTE: the caller must have a valid reference to the task, the
-+ * task must not exit() & deallocate itself prematurely. The
-+ * call is not atomic; no spinlocks may be held.
-+ */
-+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
-+{
-+ unsigned long flags;
-+ int running_wrong = 0;
-+ int queued = 0;
-+ struct rq *rq;
-+ int ret = 0;
-+
-+ rq = task_grq_lock(p, &flags);
-+
-+ if (!cpumask_intersects(new_mask, cpu_active_mask)) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
-+ !cpumask_equal(&p->cpus_allowed, new_mask))) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ queued = task_queued(p);
-+
-+ cpumask_copy(&p->cpus_allowed, new_mask);
-+
-+ /* Can the task run on the task's current CPU? If so, we're done */
-+ if (cpumask_test_cpu(task_cpu(p), new_mask))
-+ goto out;
-+
-+ if (task_running(p)) {
-+ /* Task is running on the wrong cpu now, reschedule it. */
-+ if (rq == this_rq()) {
-+ set_tsk_need_resched(p);
-+ running_wrong = 1;
-+ } else
-+ resched_task(p);
-+ } else
-+ set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask));
-+
-+out:
-+ if (queued)
-+ try_preempt(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ if (running_wrong)
-+ _cond_resched();
-+
-+ return ret;
-+}
-+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+/*
-+ * Reschedule a task if it's on a dead CPU.
-+ */
-+void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq, *dead_rq;
-+
-+ dead_rq = cpu_rq(dead_cpu);
-+ rq = task_grq_lock(p, &flags);
-+ if (rq == dead_rq && task_running(p))
-+ resched_task(p);
-+ task_grq_unlock(&flags);
-+
-+}
-+
-+/* Run through task list and find tasks affined to just the dead cpu, then
-+ * allocate a new affinity */
-+static void break_sole_affinity(int src_cpu)
-+{
-+ struct task_struct *p, *t;
-+
-+ do_each_thread(t, p) {
-+ if (!online_cpus(p)) {
-+ cpumask_copy(&p->cpus_allowed, cpu_possible_mask);
-+ /*
-+ * Don't tell them about moving exiting tasks or
-+ * kernel threads (both mm NULL), since they never
-+ * leave kernel.
-+ */
-+ if (p->mm && printk_ratelimit()) {
-+ printk(KERN_INFO "process %d (%s) no "
-+ "longer affine to cpu %d\n",
-+ task_pid_nr(p), p->comm, src_cpu);
-+ }
-+ }
-+ } while_each_thread(t, p);
-+}
-+
-+/*
-+ * Schedules idle task to be the next runnable task on current CPU.
-+ * It does so by boosting its priority to highest possible.
-+ * Used by CPU offline code.
-+ */
-+void sched_idle_next(void)
-+{
-+ int this_cpu = smp_processor_id();
-+ struct rq *rq = cpu_rq(this_cpu);
-+ struct task_struct *idle = rq->idle;
-+ unsigned long flags;
-+
-+ /* cpu has to be offline */
-+ BUG_ON(cpu_online(this_cpu));
-+
-+ /*
-+ * Strictly not necessary since rest of the CPUs are stopped by now
-+ * and interrupts disabled on the current cpu.
-+ */
-+ grq_lock_irqsave(&flags);
-+ break_sole_affinity(this_cpu);
-+
-+ __setscheduler(idle, rq, SCHED_FIFO, STOP_PRIO);
-+
-+ activate_idle_task(idle);
-+ set_tsk_need_resched(rq->curr);
-+
-+ grq_unlock_irqrestore(&flags);
-+}
-+
-+/*
-+ * Ensures that the idle task is using init_mm right before its cpu goes
-+ * offline.
-+ */
-+void idle_task_exit(void)
-+{
-+ struct mm_struct *mm = current->active_mm;
-+
-+ BUG_ON(cpu_online(smp_processor_id()));
-+
-+ if (mm != &init_mm)
-+ switch_mm(mm, &init_mm, current);
-+ mmdrop(mm);
-+}
-+
-+#endif /* CONFIG_HOTPLUG_CPU */
-+
-+void sched_set_stop_task(int cpu, struct task_struct *stop)
-+{
-+ struct sched_param stop_param = { .sched_priority = STOP_PRIO };
-+ struct sched_param start_param = { .sched_priority = MAX_USER_RT_PRIO - 1 };
-+ struct task_struct *old_stop = cpu_rq(cpu)->stop;
-+
-+ if (stop) {
-+ /*
-+ * Make it appear like a SCHED_FIFO task, its something
-+ * userspace knows about and won't get confused about.
-+ *
-+ * Also, it will make PI more or less work without too
-+ * much confusion -- but then, stop work should not
-+ * rely on PI working anyway.
-+ */
-+ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
-+ }
-+
-+ cpu_rq(cpu)->stop = stop;
-+
-+ if (old_stop) {
-+ /*
-+ * Reset it back to a normal rt scheduling prio so that
-+ * it can die in pieces.
-+ */
-+ sched_setscheduler_nocheck(old_stop, SCHED_FIFO, &start_param);
-+ }
-+}
-+
-+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-+
-+static struct ctl_table sd_ctl_dir[] = {
-+ {
-+ .procname = "sched_domain",
-+ .mode = 0555,
-+ },
-+ {}
-+};
-+
-+static struct ctl_table sd_ctl_root[] = {
-+ {
-+ .procname = "kernel",
-+ .mode = 0555,
-+ .child = sd_ctl_dir,
-+ },
-+ {}
-+};
-+
-+static struct ctl_table *sd_alloc_ctl_entry(int n)
-+{
-+ struct ctl_table *entry =
-+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
-+
-+ return entry;
-+}
-+
-+static void sd_free_ctl_entry(struct ctl_table **tablep)
-+{
-+ struct ctl_table *entry;
-+
-+ /*
-+ * In the intermediate directories, both the child directory and
-+ * procname are dynamically allocated and could fail but the mode
-+ * will always be set. In the lowest directory the names are
-+ * static strings and all have proc handlers.
-+ */
-+ for (entry = *tablep; entry->mode; entry++) {
-+ if (entry->child)
-+ sd_free_ctl_entry(&entry->child);
-+ if (entry->proc_handler == NULL)
-+ kfree(entry->procname);
-+ }
-+
-+ kfree(*tablep);
-+ *tablep = NULL;
-+}
-+
-+static void
-+set_table_entry(struct ctl_table *entry,
-+ const char *procname, void *data, int maxlen,
-+ mode_t mode, proc_handler *proc_handler)
-+{
-+ entry->procname = procname;
-+ entry->data = data;
-+ entry->maxlen = maxlen;
-+ entry->mode = mode;
-+ entry->proc_handler = proc_handler;
-+}
-+
-+static struct ctl_table *
-+sd_alloc_ctl_domain_table(struct sched_domain *sd)
-+{
-+ struct ctl_table *table = sd_alloc_ctl_entry(13);
-+
-+ if (table == NULL)
-+ return NULL;
-+
-+ set_table_entry(&table[0], "min_interval", &sd->min_interval,
-+ sizeof(long), 0644, proc_doulongvec_minmax);
-+ set_table_entry(&table[1], "max_interval", &sd->max_interval,
-+ sizeof(long), 0644, proc_doulongvec_minmax);
-+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[9], "cache_nice_tries",
-+ &sd->cache_nice_tries,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[10], "flags", &sd->flags,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[11], "name", sd->name,
-+ CORENAME_MAX_SIZE, 0444, proc_dostring);
-+ /* &table[12] is terminator */
-+
-+ return table;
-+}
-+
-+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
-+{
-+ struct ctl_table *entry, *table;
-+ struct sched_domain *sd;
-+ int domain_num = 0, i;
-+ char buf[32];
-+
-+ for_each_domain(cpu, sd)
-+ domain_num++;
-+ entry = table = sd_alloc_ctl_entry(domain_num + 1);
-+ if (table == NULL)
-+ return NULL;
-+
-+ i = 0;
-+ for_each_domain(cpu, sd) {
-+ snprintf(buf, 32, "domain%d", i);
-+ entry->procname = kstrdup(buf, GFP_KERNEL);
-+ entry->mode = 0555;
-+ entry->child = sd_alloc_ctl_domain_table(sd);
-+ entry++;
-+ i++;
-+ }
-+ return table;
-+}
-+
-+static struct ctl_table_header *sd_sysctl_header;
-+static void register_sched_domain_sysctl(void)
-+{
-+ int i, cpu_num = num_possible_cpus();
-+ struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
-+ char buf[32];
-+
-+ WARN_ON(sd_ctl_dir[0].child);
-+ sd_ctl_dir[0].child = entry;
-+
-+ if (entry == NULL)
-+ return;
-+
-+ for_each_possible_cpu(i) {
-+ snprintf(buf, 32, "cpu%d", i);
-+ entry->procname = kstrdup(buf, GFP_KERNEL);
-+ entry->mode = 0555;
-+ entry->child = sd_alloc_ctl_cpu_table(i);
-+ entry++;
-+ }
-+
-+ WARN_ON(sd_sysctl_header);
-+ sd_sysctl_header = register_sysctl_table(sd_ctl_root);
-+}
-+
-+/* may be called multiple times per register */
-+static void unregister_sched_domain_sysctl(void)
-+{
-+ if (sd_sysctl_header)
-+ unregister_sysctl_table(sd_sysctl_header);
-+ sd_sysctl_header = NULL;
-+ if (sd_ctl_dir[0].child)
-+ sd_free_ctl_entry(&sd_ctl_dir[0].child);
-+}
-+#else
-+static void register_sched_domain_sysctl(void)
-+{
-+}
-+static void unregister_sched_domain_sysctl(void)
-+{
-+}
-+#endif
-+
-+static void set_rq_online(struct rq *rq)
-+{
-+ if (!rq->online) {
-+ cpumask_set_cpu(cpu_of(rq), rq->rd->online);
-+ rq->online = 1;
-+ }
-+}
-+
-+static void set_rq_offline(struct rq *rq)
-+{
-+ if (rq->online) {
-+ cpumask_clear_cpu(cpu_of(rq), rq->rd->online);
-+ rq->online = 0;
-+ }
-+}
-+
-+/*
-+ * migration_call - callback that gets triggered when a CPU is added.
-+ */
-+static int __cpuinit
-+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
-+{
-+#ifdef CONFIG_HOTPLUG_CPU
-+ struct task_struct *idle;
-+#endif
-+ int cpu = (long)hcpu;
-+ unsigned long flags;
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ switch (action) {
-+
-+ case CPU_UP_PREPARE:
-+ case CPU_UP_PREPARE_FROZEN:
-+ break;
-+
-+ case CPU_ONLINE:
-+ case CPU_ONLINE_FROZEN:
-+ /* Update our root-domain */
-+ grq_lock_irqsave(&flags);
-+ if (rq->rd) {
-+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-+
-+ set_rq_online(rq);
-+ }
-+ grq_unlock_irqrestore(&flags);
-+ break;
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+ case CPU_DEAD:
-+ case CPU_DEAD_FROZEN:
-+ idle = rq->idle;
-+ /* Idle task back to normal (off runqueue, low prio) */
-+ grq_lock_irq();
-+ return_task(idle, 1);
-+ idle->static_prio = MAX_PRIO;
-+ __setscheduler(idle, rq, SCHED_NORMAL, 0);
-+ idle->prio = PRIO_LIMIT;
-+ set_rq_task(rq, idle);
-+ update_clocks(rq);
-+ grq_unlock_irq();
-+ break;
-+
-+ case CPU_DYING:
-+ case CPU_DYING_FROZEN:
-+ /* Update our root-domain */
-+ grq_lock_irqsave(&flags);
-+ if (rq->rd) {
-+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-+ set_rq_offline(rq);
-+ }
-+ grq_unlock_irqrestore(&flags);
-+ break;
-+#endif
-+ }
-+ return NOTIFY_OK;
-+}
-+
-+/*
-+ * Register at high priority so that task migration (migrate_all_tasks)
-+ * happens before everything else. This has to be lower priority than
-+ * the notifier in the perf_counter subsystem, though.
-+ */
-+static struct notifier_block __cpuinitdata migration_notifier = {
-+ .notifier_call = migration_call,
-+ .priority = CPU_PRI_MIGRATION,
-+};
-+
-+static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
-+ unsigned long action, void *hcpu)
-+{
-+ switch (action & ~CPU_TASKS_FROZEN) {
-+ case CPU_ONLINE:
-+ case CPU_DOWN_FAILED:
-+ set_cpu_active((long)hcpu, true);
-+ return NOTIFY_OK;
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+
-+static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
-+ unsigned long action, void *hcpu)
-+{
-+ switch (action & ~CPU_TASKS_FROZEN) {
-+ case CPU_DOWN_PREPARE:
-+ set_cpu_active((long)hcpu, false);
-+ return NOTIFY_OK;
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+
-+int __init migration_init(void)
-+{
-+ void *cpu = (void *)(long)smp_processor_id();
-+ int err;
-+
-+ /* Initialise migration for the boot CPU */
-+ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-+ BUG_ON(err == NOTIFY_BAD);
-+ migration_call(&migration_notifier, CPU_ONLINE, cpu);
-+ register_cpu_notifier(&migration_notifier);
-+
-+ /* Register cpu active notifiers */
-+ cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
-+ cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
-+
-+ return 0;
-+}
-+early_initcall(migration_init);
-+#endif
-+
-+#ifdef CONFIG_SMP
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+
-+static __read_mostly int sched_domain_debug_enabled;
-+
-+static int __init sched_domain_debug_setup(char *str)
-+{
-+ sched_domain_debug_enabled = 1;
-+
-+ return 0;
-+}
-+early_param("sched_debug", sched_domain_debug_setup);
-+
-+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-+ struct cpumask *groupmask)
-+{
-+ struct sched_group *group = sd->groups;
-+ char str[256];
-+
-+ cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
-+ cpumask_clear(groupmask);
-+
-+ printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-+
-+ if (!(sd->flags & SD_LOAD_BALANCE)) {
-+ printk("does not load-balance\n");
-+ if (sd->parent)
-+ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-+ " has parent");
-+ return -1;
-+ }
-+
-+ printk(KERN_CONT "span %s level %s\n", str, sd->name);
-+
-+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-+ printk(KERN_ERR "ERROR: domain->span does not contain "
-+ "CPU%d\n", cpu);
-+ }
-+ if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
-+ printk(KERN_ERR "ERROR: domain->groups does not contain"
-+ " CPU%d\n", cpu);
-+ }
-+
-+ printk(KERN_DEBUG "%*s groups:", level + 1, "");
-+ do {
-+ if (!group) {
-+ printk("\n");
-+ printk(KERN_ERR "ERROR: group is NULL\n");
-+ break;
-+ }
-+
-+ if (!group->cpu_power) {
-+ printk(KERN_CONT "\n");
-+ printk(KERN_ERR "ERROR: domain->cpu_power not "
-+ "set\n");
-+ break;
-+ }
-+
-+ if (!cpumask_weight(sched_group_cpus(group))) {
-+ printk(KERN_CONT "\n");
-+ printk(KERN_ERR "ERROR: empty group\n");
-+ break;
-+ }
-+
-+ if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
-+ printk(KERN_CONT "\n");
-+ printk(KERN_ERR "ERROR: repeated CPUs\n");
-+ break;
-+ }
-+
-+ cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-+
-+ cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
-+
-+ printk(KERN_CONT " %s", str);
-+ if (group->cpu_power != SCHED_LOAD_SCALE) {
-+ printk(KERN_CONT " (cpu_power = %d)",
-+ group->cpu_power);
-+ }
-+
-+ group = group->next;
-+ } while (group != sd->groups);
-+ printk(KERN_CONT "\n");
-+
-+ if (!cpumask_equal(sched_domain_span(sd), groupmask))
-+ printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-+
-+ if (sd->parent &&
-+ !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-+ printk(KERN_ERR "ERROR: parent span is not a superset "
-+ "of domain->span\n");
-+ return 0;
-+}
-+
-+static void sched_domain_debug(struct sched_domain *sd, int cpu)
-+{
-+ cpumask_var_t groupmask;
-+ int level = 0;
-+
-+ if (!sched_domain_debug_enabled)
-+ return;
-+
-+ if (!sd) {
-+ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-+ return;
-+ }
-+
-+ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-+
-+ if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
-+ printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
-+ return;
-+ }
-+
-+ for (;;) {
-+ if (sched_domain_debug_one(sd, cpu, level, groupmask))
-+ break;
-+ level++;
-+ sd = sd->parent;
-+ if (!sd)
-+ break;
-+ }
-+ free_cpumask_var(groupmask);
-+}
-+#else /* !CONFIG_SCHED_DEBUG */
-+# define sched_domain_debug(sd, cpu) do { } while (0)
-+#endif /* CONFIG_SCHED_DEBUG */
-+
-+static int sd_degenerate(struct sched_domain *sd)
-+{
-+ if (cpumask_weight(sched_domain_span(sd)) == 1)
-+ return 1;
-+
-+ /* Following flags need at least 2 groups */
-+ if (sd->flags & (SD_LOAD_BALANCE |
-+ SD_BALANCE_NEWIDLE |
-+ SD_BALANCE_FORK |
-+ SD_BALANCE_EXEC |
-+ SD_SHARE_CPUPOWER |
-+ SD_SHARE_PKG_RESOURCES)) {
-+ if (sd->groups != sd->groups->next)
-+ return 0;
-+ }
-+
-+ /* Following flags don't use groups */
-+ if (sd->flags & (SD_WAKE_AFFINE))
-+ return 0;
-+
-+ return 1;
-+}
-+
-+static int
-+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-+{
-+ unsigned long cflags = sd->flags, pflags = parent->flags;
-+
-+ if (sd_degenerate(parent))
-+ return 1;
-+
-+ if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
-+ return 0;
-+
-+ /* Flags needing groups don't count if only 1 group in parent */
-+ if (parent->groups == parent->groups->next) {
-+ pflags &= ~(SD_LOAD_BALANCE |
-+ SD_BALANCE_NEWIDLE |
-+ SD_BALANCE_FORK |
-+ SD_BALANCE_EXEC |
-+ SD_SHARE_CPUPOWER |
-+ SD_SHARE_PKG_RESOURCES);
-+ if (nr_node_ids == 1)
-+ pflags &= ~SD_SERIALIZE;
-+ }
-+ if (~cflags & pflags)
-+ return 0;
-+
-+ return 1;
-+}
-+
-+static void free_rootdomain(struct root_domain *rd)
-+{
-+ synchronize_sched();
-+
-+ free_cpumask_var(rd->rto_mask);
-+ free_cpumask_var(rd->online);
-+ free_cpumask_var(rd->span);
-+ kfree(rd);
-+}
-+
-+static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-+{
-+ struct root_domain *old_rd = NULL;
-+ unsigned long flags;
-+
-+ grq_lock_irqsave(&flags);
-+
-+ if (rq->rd) {
-+ old_rd = rq->rd;
-+
-+ if (cpumask_test_cpu(cpu_of(rq), old_rd->online))
-+ set_rq_offline(rq);
-+
-+ cpumask_clear_cpu(cpu_of(rq), old_rd->span);
-+
-+ /*
-+ * If we dont want to free the old_rt yet then
-+ * set old_rd to NULL to skip the freeing later
-+ * in this function:
-+ */
-+ if (!atomic_dec_and_test(&old_rd->refcount))
-+ old_rd = NULL;
-+ }
-+
-+ atomic_inc(&rd->refcount);
-+ rq->rd = rd;
-+
-+ cpumask_set_cpu(cpu_of(rq), rd->span);
-+ if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
-+ set_rq_online(rq);
-+
-+ grq_unlock_irqrestore(&flags);
-+
-+ if (old_rd)
-+ free_rootdomain(old_rd);
-+}
-+
-+static int init_rootdomain(struct root_domain *rd)
-+{
-+ memset(rd, 0, sizeof(*rd));
-+
-+ if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
-+ goto out;
-+ if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
-+ goto free_span;
-+ if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
-+ goto free_online;
-+
-+ if (cpupri_init(&rd->cpupri) != 0)
-+ goto free_rto_mask;
-+ return 0;
-+
-+free_rto_mask:
-+ free_cpumask_var(rd->rto_mask);
-+free_online:
-+ free_cpumask_var(rd->online);
-+free_span:
-+ free_cpumask_var(rd->span);
-+out:
-+ return -ENOMEM;
-+}
-+
-+static void init_defrootdomain(void)
-+{
-+ init_rootdomain(&def_root_domain);
-+
-+ atomic_set(&def_root_domain.refcount, 1);
-+}
-+
-+static struct root_domain *alloc_rootdomain(void)
-+{
-+ struct root_domain *rd;
-+
-+ rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-+ if (!rd)
-+ return NULL;
-+
-+ if (init_rootdomain(rd) != 0) {
-+ kfree(rd);
-+ return NULL;
-+ }
-+
-+ return rd;
-+}
-+
-+/*
-+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
-+ * hold the hotplug lock.
-+ */
-+static void
-+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ struct sched_domain *tmp;
-+
-+ for (tmp = sd; tmp; tmp = tmp->parent)
-+ tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
-+
-+ /* Remove the sched domains which do not contribute to scheduling. */
-+ for (tmp = sd; tmp; ) {
-+ struct sched_domain *parent = tmp->parent;
-+ if (!parent)
-+ break;
-+
-+ if (sd_parent_degenerate(tmp, parent)) {
-+ tmp->parent = parent->parent;
-+ if (parent->parent)
-+ parent->parent->child = tmp;
-+ } else
-+ tmp = tmp->parent;
-+ }
-+
-+ if (sd && sd_degenerate(sd)) {
-+ sd = sd->parent;
-+ if (sd)
-+ sd->child = NULL;
-+ }
-+
-+ sched_domain_debug(sd, cpu);
-+
-+ rq_attach_root(rq, rd);
-+ rcu_assign_pointer(rq->sd, sd);
-+}
-+
-+/* cpus with isolated domains */
-+static cpumask_var_t cpu_isolated_map;
-+
-+/* Setup the mask of cpus configured for isolated domains */
-+static int __init isolated_cpu_setup(char *str)
-+{
-+ alloc_bootmem_cpumask_var(&cpu_isolated_map);
-+ cpulist_parse(str, cpu_isolated_map);
-+ return 1;
-+}
-+
-+__setup("isolcpus=", isolated_cpu_setup);
-+
-+/*
-+ * init_sched_build_groups takes the cpumask we wish to span, and a pointer
-+ * to a function which identifies what group(along with sched group) a CPU
-+ * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
-+ * (due to the fact that we keep track of groups covered with a struct cpumask).
-+ *
-+ * init_sched_build_groups will build a circular linked list of the groups
-+ * covered by the given span, and will set each group's ->cpumask correctly,
-+ * and ->cpu_power to 0.
-+ */
-+static void
-+init_sched_build_groups(const struct cpumask *span,
-+ const struct cpumask *cpu_map,
-+ int (*group_fn)(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg,
-+ struct cpumask *tmpmask),
-+ struct cpumask *covered, struct cpumask *tmpmask)
-+{
-+ struct sched_group *first = NULL, *last = NULL;
-+ int i;
-+
-+ cpumask_clear(covered);
-+
-+ for_each_cpu(i, span) {
-+ struct sched_group *sg;
-+ int group = group_fn(i, cpu_map, &sg, tmpmask);
-+ int j;
-+
-+ if (cpumask_test_cpu(i, covered))
-+ continue;
-+
-+ cpumask_clear(sched_group_cpus(sg));
-+ sg->cpu_power = 0;
-+
-+ for_each_cpu(j, span) {
-+ if (group_fn(j, cpu_map, NULL, tmpmask) != group)
-+ continue;
-+
-+ cpumask_set_cpu(j, covered);
-+ cpumask_set_cpu(j, sched_group_cpus(sg));
-+ }
-+ if (!first)
-+ first = sg;
-+ if (last)
-+ last->next = sg;
-+ last = sg;
-+ }
-+ last->next = first;
-+}
-+
-+#define SD_NODES_PER_DOMAIN 16
-+
-+#ifdef CONFIG_NUMA
-+
-+/**
-+ * find_next_best_node - find the next node to include in a sched_domain
-+ * @node: node whose sched_domain we're building
-+ * @used_nodes: nodes already in the sched_domain
-+ *
-+ * Find the next node to include in a given scheduling domain. Simply
-+ * finds the closest node not already in the @used_nodes map.
-+ *
-+ * Should use nodemask_t.
-+ */
-+static int find_next_best_node(int node, nodemask_t *used_nodes)
-+{
-+ int i, n, val, min_val, best_node = 0;
-+
-+ min_val = INT_MAX;
-+
-+ for (i = 0; i < nr_node_ids; i++) {
-+ /* Start at @node */
-+ n = (node + i) % nr_node_ids;
-+
-+ if (!nr_cpus_node(n))
-+ continue;
-+
-+ /* Skip already used nodes */
-+ if (node_isset(n, *used_nodes))
-+ continue;
-+
-+ /* Simple min distance search */
-+ val = node_distance(node, n);
-+
-+ if (val < min_val) {
-+ min_val = val;
-+ best_node = n;
-+ }
-+ }
-+
-+ node_set(best_node, *used_nodes);
-+ return best_node;
-+}
-+
-+/**
-+ * sched_domain_node_span - get a cpumask for a node's sched_domain
-+ * @node: node whose cpumask we're constructing
-+ * @span: resulting cpumask
-+ *
-+ * Given a node, construct a good cpumask for its sched_domain to span. It
-+ * should be one that prevents unnecessary balancing, but also spreads tasks
-+ * out optimally.
-+ */
-+static void sched_domain_node_span(int node, struct cpumask *span)
-+{
-+ nodemask_t used_nodes;
-+ int i;
-+
-+ cpumask_clear(span);
-+ nodes_clear(used_nodes);
-+
-+ cpumask_or(span, span, cpumask_of_node(node));
-+ node_set(node, used_nodes);
-+
-+ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
-+ int next_node = find_next_best_node(node, &used_nodes);
-+
-+ cpumask_or(span, span, cpumask_of_node(next_node));
-+ }
-+}
-+#endif /* CONFIG_NUMA */
-+
-+int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
-+
-+/*
-+ * The cpus mask in sched_group and sched_domain hangs off the end.
-+ *
-+ * ( See the the comments in include/linux/sched.h:struct sched_group
-+ * and struct sched_domain. )
-+ */
-+struct static_sched_group {
-+ struct sched_group sg;
-+ DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
-+};
-+
-+struct static_sched_domain {
-+ struct sched_domain sd;
-+ DECLARE_BITMAP(span, CONFIG_NR_CPUS);
-+};
-+
-+struct s_data {
-+#ifdef CONFIG_NUMA
-+ int sd_allnodes;
-+ cpumask_var_t domainspan;
-+ cpumask_var_t covered;
-+ cpumask_var_t notcovered;
-+#endif
-+ cpumask_var_t nodemask;
-+ cpumask_var_t this_sibling_map;
-+ cpumask_var_t this_core_map;
-+ cpumask_var_t this_book_map;
-+ cpumask_var_t send_covered;
-+ cpumask_var_t tmpmask;
-+ struct sched_group **sched_group_nodes;
-+ struct root_domain *rd;
-+};
-+
-+enum s_alloc {
-+ sa_sched_groups = 0,
-+ sa_rootdomain,
-+ sa_tmpmask,
-+ sa_send_covered,
-+ sa_this_book_map,
-+ sa_this_core_map,
-+ sa_this_sibling_map,
-+ sa_nodemask,
-+ sa_sched_group_nodes,
-+#ifdef CONFIG_NUMA
-+ sa_notcovered,
-+ sa_covered,
-+ sa_domainspan,
-+#endif
-+ sa_none,
-+};
-+
-+/*
-+ * SMT sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_SMT
-+static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
-+
-+static int
-+cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *unused)
-+{
-+ if (sg)
-+ *sg = &per_cpu(sched_groups, cpu).sg;
-+ return cpu;
-+}
-+#endif /* CONFIG_SCHED_SMT */
-+
-+/*
-+ * multi-core sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_MC
-+static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
-+
-+static int
-+cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *mask)
-+{
-+ int group;
-+#ifdef CONFIG_SCHED_SMT
-+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#else
-+ group = cpu;
-+#endif
-+ if (sg)
-+ *sg = &per_cpu(sched_group_core, group).sg;
-+ return group;
-+}
-+#endif /* CONFIG_SCHED_MC */
-+
-+/*
-+ * book sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_BOOK
-+static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
-+
-+static int
-+cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *mask)
-+{
-+ int group = cpu;
-+#ifdef CONFIG_SCHED_MC
-+ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#elif defined(CONFIG_SCHED_SMT)
-+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#endif
-+ if (sg)
-+ *sg = &per_cpu(sched_group_book, group).sg;
-+ return group;
-+}
-+#endif /* CONFIG_SCHED_BOOK */
-+
-+static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
-+
-+static int
-+cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *mask)
-+{
-+ int group;
-+#ifdef CONFIG_SCHED_BOOK
-+ cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#elif defined(CONFIG_SCHED_MC)
-+ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#elif defined(CONFIG_SCHED_SMT)
-+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#else
-+ group = cpu;
-+#endif
-+ if (sg)
-+ *sg = &per_cpu(sched_group_phys, group).sg;
-+ return group;
-+}
-+
-+/**
-+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
-+ * @group: The group whose first cpu is to be returned.
-+ */
-+static inline unsigned int group_first_cpu(struct sched_group *group)
-+{
-+ return cpumask_first(sched_group_cpus(group));
-+}
-+
-+#ifdef CONFIG_NUMA
-+/*
-+ * The init_sched_build_groups can't handle what we want to do with node
-+ * groups, so roll our own. Now each node has its own list of groups which
-+ * gets dynamically allocated.
-+ */
-+static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
-+static struct sched_group ***sched_group_nodes_bycpu;
-+
-+static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
-+
-+static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg,
-+ struct cpumask *nodemask)
-+{
-+ int group;
-+
-+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
-+ group = cpumask_first(nodemask);
-+
-+ if (sg)
-+ *sg = &per_cpu(sched_group_allnodes, group).sg;
-+ return group;
-+}
-+
-+static void init_numa_sched_groups_power(struct sched_group *group_head)
-+{
-+ struct sched_group *sg = group_head;
-+ int j;
-+
-+ if (!sg)
-+ return;
-+ do {
-+ for_each_cpu(j, sched_group_cpus(sg)) {
-+ struct sched_domain *sd;
-+
-+ sd = &per_cpu(phys_domains, j).sd;
-+ if (j != group_first_cpu(sd->groups)) {
-+ /*
-+ * Only add "power" once for each
-+ * physical package.
-+ */
-+ continue;
-+ }
-+
-+ sg->cpu_power += sd->groups->cpu_power;
-+ }
-+ sg = sg->next;
-+ } while (sg != group_head);
-+}
-+
-+static int build_numa_sched_groups(struct s_data *d,
-+ const struct cpumask *cpu_map, int num)
-+{
-+ struct sched_domain *sd;
-+ struct sched_group *sg, *prev;
-+ int n, j;
-+
-+ cpumask_clear(d->covered);
-+ cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
-+ if (cpumask_empty(d->nodemask)) {
-+ d->sched_group_nodes[num] = NULL;
-+ goto out;
-+ }
-+
-+ sched_domain_node_span(num, d->domainspan);
-+ cpumask_and(d->domainspan, d->domainspan, cpu_map);
-+
-+ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
-+ GFP_KERNEL, num);
-+ if (!sg) {
-+ printk(KERN_WARNING "Can not alloc domain group for node %d\n",
-+ num);
-+ return -ENOMEM;
-+ }
-+ d->sched_group_nodes[num] = sg;
-+
-+ for_each_cpu(j, d->nodemask) {
-+ sd = &per_cpu(node_domains, j).sd;
-+ sd->groups = sg;
-+ }
-+
-+ sg->cpu_power = 0;
-+ cpumask_copy(sched_group_cpus(sg), d->nodemask);
-+ sg->next = sg;
-+ cpumask_or(d->covered, d->covered, d->nodemask);
-+
-+ prev = sg;
-+ for (j = 0; j < nr_node_ids; j++) {
-+ n = (num + j) % nr_node_ids;
-+ cpumask_complement(d->notcovered, d->covered);
-+ cpumask_and(d->tmpmask, d->notcovered, cpu_map);
-+ cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
-+ if (cpumask_empty(d->tmpmask))
-+ break;
-+ cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
-+ if (cpumask_empty(d->tmpmask))
-+ continue;
-+ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
-+ GFP_KERNEL, num);
-+ if (!sg) {
-+ printk(KERN_WARNING
-+ "Can not alloc domain group for node %d\n", j);
-+ return -ENOMEM;
-+ }
-+ sg->cpu_power = 0;
-+ cpumask_copy(sched_group_cpus(sg), d->tmpmask);
-+ sg->next = prev->next;
-+ cpumask_or(d->covered, d->covered, d->tmpmask);
-+ prev->next = sg;
-+ prev = sg;
-+ }
-+out:
-+ return 0;
-+}
-+#endif /* CONFIG_NUMA */
-+
-+#ifdef CONFIG_NUMA
-+/* Free memory allocated for various sched_group structures */
-+static void free_sched_groups(const struct cpumask *cpu_map,
-+ struct cpumask *nodemask)
-+{
-+ int cpu, i;
-+
-+ for_each_cpu(cpu, cpu_map) {
-+ struct sched_group **sched_group_nodes
-+ = sched_group_nodes_bycpu[cpu];
-+
-+ if (!sched_group_nodes)
-+ continue;
-+
-+ for (i = 0; i < nr_node_ids; i++) {
-+ struct sched_group *oldsg, *sg = sched_group_nodes[i];
-+
-+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
-+ if (cpumask_empty(nodemask))
-+ continue;
-+
-+ if (sg == NULL)
-+ continue;
-+ sg = sg->next;
-+next_sg:
-+ oldsg = sg;
-+ sg = sg->next;
-+ kfree(oldsg);
-+ if (oldsg != sched_group_nodes[i])
-+ goto next_sg;
-+ }
-+ kfree(sched_group_nodes);
-+ sched_group_nodes_bycpu[cpu] = NULL;
-+ }
-+}
-+#else /* !CONFIG_NUMA */
-+static void free_sched_groups(const struct cpumask *cpu_map,
-+ struct cpumask *nodemask)
-+{
-+}
-+#endif /* CONFIG_NUMA */
-+
-+/*
-+ * Initialise sched groups cpu_power.
-+ *
-+ * cpu_power indicates the capacity of sched group, which is used while
-+ * distributing the load between different sched groups in a sched domain.
-+ * Typically cpu_power for all the groups in a sched domain will be same unless
-+ * there are asymmetries in the topology. If there are asymmetries, group
-+ * having more cpu_power will pickup more load compared to the group having
-+ * less cpu_power.
-+ *
-+ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
-+ * the maximum number of tasks a group can handle in the presence of other idle
-+ * or lightly loaded groups in the same sched domain.
-+ */
-+static void init_sched_groups_power(int cpu, struct sched_domain *sd)
-+{
-+ struct sched_domain *child;
-+ struct sched_group *group;
-+ long power;
-+ int weight;
-+
-+ WARN_ON(!sd || !sd->groups);
-+
-+ if (cpu != group_first_cpu(sd->groups))
-+ return;
-+
-+ sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
-+
-+ child = sd->child;
-+
-+ sd->groups->cpu_power = 0;
-+
-+ if (!child) {
-+ power = SCHED_LOAD_SCALE;
-+ weight = cpumask_weight(sched_domain_span(sd));
-+ /*
-+ * SMT siblings share the power of a single core.
-+ * Usually multiple threads get a better yield out of
-+ * that one core than a single thread would have,
-+ * reflect that in sd->smt_gain.
-+ */
-+ if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
-+ power *= sd->smt_gain;
-+ power /= weight;
-+ power >>= SCHED_LOAD_SHIFT;
-+ }
-+ sd->groups->cpu_power += power;
-+ return;
-+ }
-+
-+ /*
-+ * Add cpu_power of each child group to this groups cpu_power
-+ */
-+ group = child->groups;
-+ do {
-+ sd->groups->cpu_power += group->cpu_power;
-+ group = group->next;
-+ } while (group != child->groups);
-+}
-+
-+/*
-+ * Initialisers for schedule domains
-+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
-+ */
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+# define SD_INIT_NAME(sd, type) sd->name = #type
-+#else
-+# define SD_INIT_NAME(sd, type) do { } while (0)
-+#endif
-+
-+#define SD_INIT(sd, type) sd_init_##type(sd)
-+
-+#define SD_INIT_FUNC(type) \
-+static noinline void sd_init_##type(struct sched_domain *sd) \
-+{ \
-+ memset(sd, 0, sizeof(*sd)); \
-+ *sd = SD_##type##_INIT; \
-+ sd->level = SD_LV_##type; \
-+ SD_INIT_NAME(sd, type); \
-+}
-+
-+SD_INIT_FUNC(CPU)
-+#ifdef CONFIG_NUMA
-+ SD_INIT_FUNC(ALLNODES)
-+ SD_INIT_FUNC(NODE)
-+#endif
-+#ifdef CONFIG_SCHED_SMT
-+ SD_INIT_FUNC(SIBLING)
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ SD_INIT_FUNC(MC)
-+#endif
-+#ifdef CONFIG_SCHED_BOOK
-+ SD_INIT_FUNC(BOOK)
-+#endif
-+
-+static int default_relax_domain_level = -1;
-+
-+static int __init setup_relax_domain_level(char *str)
-+{
-+ unsigned long val;
-+
-+ val = simple_strtoul(str, NULL, 0);
-+ if (val < SD_LV_MAX)
-+ default_relax_domain_level = val;
-+
-+ return 1;
-+}
-+__setup("relax_domain_level=", setup_relax_domain_level);
-+
-+static void set_domain_attribute(struct sched_domain *sd,
-+ struct sched_domain_attr *attr)
-+{
-+ int request;
-+
-+ if (!attr || attr->relax_domain_level < 0) {
-+ if (default_relax_domain_level < 0)
-+ return;
-+ else
-+ request = default_relax_domain_level;
-+ } else
-+ request = attr->relax_domain_level;
-+ if (request < sd->level) {
-+ /* turn off idle balance on this domain */
-+ sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-+ } else {
-+ /* turn on idle balance on this domain */
-+ sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
-+ }
-+}
-+
-+static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
-+ const struct cpumask *cpu_map)
-+{
-+ switch (what) {
-+ case sa_sched_groups:
-+ free_sched_groups(cpu_map, d->tmpmask); /* fall through */
-+ d->sched_group_nodes = NULL;
-+ case sa_rootdomain:
-+ free_rootdomain(d->rd); /* fall through */
-+ case sa_tmpmask:
-+ free_cpumask_var(d->tmpmask); /* fall through */
-+ case sa_send_covered:
-+ free_cpumask_var(d->send_covered); /* fall through */
-+ case sa_this_book_map:
-+ free_cpumask_var(d->this_book_map); /* fall through */
-+ case sa_this_core_map:
-+ free_cpumask_var(d->this_core_map); /* fall through */
-+ case sa_this_sibling_map:
-+ free_cpumask_var(d->this_sibling_map); /* fall through */
-+ case sa_nodemask:
-+ free_cpumask_var(d->nodemask); /* fall through */
-+ case sa_sched_group_nodes:
-+#ifdef CONFIG_NUMA
-+ kfree(d->sched_group_nodes); /* fall through */
-+ case sa_notcovered:
-+ free_cpumask_var(d->notcovered); /* fall through */
-+ case sa_covered:
-+ free_cpumask_var(d->covered); /* fall through */
-+ case sa_domainspan:
-+ free_cpumask_var(d->domainspan); /* fall through */
-+#endif
-+ case sa_none:
-+ break;
-+ }
-+}
-+
-+static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
-+ const struct cpumask *cpu_map)
-+{
-+#ifdef CONFIG_NUMA
-+ if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
-+ return sa_none;
-+ if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
-+ return sa_domainspan;
-+ if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
-+ return sa_covered;
-+ /* Allocate the per-node list of sched groups */
-+ d->sched_group_nodes = kcalloc(nr_node_ids,
-+ sizeof(struct sched_group *), GFP_KERNEL);
-+ if (!d->sched_group_nodes) {
-+ printk(KERN_WARNING "Can not alloc sched group node list\n");
-+ return sa_notcovered;
-+ }
-+ sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
-+#endif
-+ if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
-+ return sa_sched_group_nodes;
-+ if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
-+ return sa_nodemask;
-+ if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
-+ return sa_this_sibling_map;
-+ if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
-+ return sa_this_core_map;
-+ if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
-+ return sa_this_book_map;
-+ if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
-+ return sa_send_covered;
-+ d->rd = alloc_rootdomain();
-+ if (!d->rd) {
-+ printk(KERN_WARNING "Cannot alloc root domain\n");
-+ return sa_tmpmask;
-+ }
-+ return sa_rootdomain;
-+}
-+
-+static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
-+ const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
-+{
-+ struct sched_domain *sd = NULL;
-+#ifdef CONFIG_NUMA
-+ struct sched_domain *parent;
-+
-+ d->sd_allnodes = 0;
-+ if (cpumask_weight(cpu_map) >
-+ SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
-+ sd = &per_cpu(allnodes_domains, i).sd;
-+ SD_INIT(sd, ALLNODES);
-+ set_domain_attribute(sd, attr);
-+ cpumask_copy(sched_domain_span(sd), cpu_map);
-+ cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
-+ d->sd_allnodes = 1;
-+ }
-+ parent = sd;
-+
-+ sd = &per_cpu(node_domains, i).sd;
-+ SD_INIT(sd, NODE);
-+ set_domain_attribute(sd, attr);
-+ sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
-+ sd->parent = parent;
-+ if (parent)
-+ parent->child = sd;
-+ cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
-+#endif
-+ return sd;
-+}
-+
-+static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
-+ const struct cpumask *cpu_map, struct sched_domain_attr *attr,
-+ struct sched_domain *parent, int i)
-+{
-+ struct sched_domain *sd;
-+ sd = &per_cpu(phys_domains, i).sd;
-+ SD_INIT(sd, CPU);
-+ set_domain_attribute(sd, attr);
-+ cpumask_copy(sched_domain_span(sd), d->nodemask);
-+ sd->parent = parent;
-+ if (parent)
-+ parent->child = sd;
-+ cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
-+ return sd;
-+}
-+
-+static struct sched_domain *__build_book_sched_domain(struct s_data *d,
-+ const struct cpumask *cpu_map, struct sched_domain_attr *attr,
-+ struct sched_domain *parent, int i)
-+{
-+ struct sched_domain *sd = parent;
-+#ifdef CONFIG_SCHED_BOOK
-+ sd = &per_cpu(book_domains, i).sd;
-+ SD_INIT(sd, BOOK);
-+ set_domain_attribute(sd, attr);
-+ cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
-+ sd->parent = parent;
-+ parent->child = sd;
-+ cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
-+#endif
-+ return sd;
-+}
-+
-+static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
-+ const struct cpumask *cpu_map, struct sched_domain_attr *attr,
-+ struct sched_domain *parent, int i)
-+{
-+ struct sched_domain *sd = parent;
-+#ifdef CONFIG_SCHED_MC
-+ sd = &per_cpu(core_domains, i).sd;
-+ SD_INIT(sd, MC);
-+ set_domain_attribute(sd, attr);
-+ cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
-+ sd->parent = parent;
-+ parent->child = sd;
-+ cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
-+#endif
-+ return sd;
-+}
-+
-+static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
-+ const struct cpumask *cpu_map, struct sched_domain_attr *attr,
-+ struct sched_domain *parent, int i)
-+{
-+ struct sched_domain *sd = parent;
-+#ifdef CONFIG_SCHED_SMT
-+ sd = &per_cpu(cpu_domains, i).sd;
-+ SD_INIT(sd, SIBLING);
-+ set_domain_attribute(sd, attr);
-+ cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
-+ sd->parent = parent;
-+ parent->child = sd;
-+ cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
-+#endif
-+ return sd;
-+}
-+
-+static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
-+ const struct cpumask *cpu_map, int cpu)
-+{
-+ switch (l) {
-+#ifdef CONFIG_SCHED_SMT
-+ case SD_LV_SIBLING: /* set up CPU (sibling) groups */
-+ cpumask_and(d->this_sibling_map, cpu_map,
-+ topology_thread_cpumask(cpu));
-+ if (cpu == cpumask_first(d->this_sibling_map))
-+ init_sched_build_groups(d->this_sibling_map, cpu_map,
-+ &cpu_to_cpu_group,
-+ d->send_covered, d->tmpmask);
-+ break;
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ case SD_LV_MC: /* set up multi-core groups */
-+ cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
-+ if (cpu == cpumask_first(d->this_core_map))
-+ init_sched_build_groups(d->this_core_map, cpu_map,
-+ &cpu_to_core_group,
-+ d->send_covered, d->tmpmask);
-+ break;
-+#endif
-+#ifdef CONFIG_SCHED_BOOK
-+ case SD_LV_BOOK: /* set up book groups */
-+ cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
-+ if (cpu == cpumask_first(d->this_book_map))
-+ init_sched_build_groups(d->this_book_map, cpu_map,
-+ &cpu_to_book_group,
-+ d->send_covered, d->tmpmask);
-+ break;
-+#endif
-+ case SD_LV_CPU: /* set up physical groups */
-+ cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
-+ if (!cpumask_empty(d->nodemask))
-+ init_sched_build_groups(d->nodemask, cpu_map,
-+ &cpu_to_phys_group,
-+ d->send_covered, d->tmpmask);
-+ break;
-+#ifdef CONFIG_NUMA
-+ case SD_LV_ALLNODES:
-+ init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
-+ d->send_covered, d->tmpmask);
-+ break;
-+#endif
-+ default:
-+ break;
-+ }
-+}
-+
-+/*
-+ * Build sched domains for a given set of cpus and attach the sched domains
-+ * to the individual cpus
-+ */
-+static int __build_sched_domains(const struct cpumask *cpu_map,
-+ struct sched_domain_attr *attr)
-+{
-+ enum s_alloc alloc_state = sa_none;
-+ struct s_data d;
-+ struct sched_domain *sd;
-+ int i;
-+#ifdef CONFIG_NUMA
-+ d.sd_allnodes = 0;
-+#endif
-+
-+ alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
-+ if (alloc_state != sa_rootdomain)
-+ goto error;
-+ alloc_state = sa_sched_groups;
-+
-+ /*
-+ * Set up domains for cpus specified by the cpu_map.
-+ */
-+ for_each_cpu(i, cpu_map) {
-+ cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
-+ cpu_map);
-+
-+ sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
-+ sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
-+ sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
-+ sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
-+ sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
-+ }
-+
-+ for_each_cpu(i, cpu_map) {
-+ build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
-+ build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
-+ build_sched_groups(&d, SD_LV_MC, cpu_map, i);
-+ }
-+
-+ /* Set up physical groups */
-+ for (i = 0; i < nr_node_ids; i++)
-+ build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
-+
-+#ifdef CONFIG_NUMA
-+ /* Set up node groups */
-+ if (d.sd_allnodes)
-+ build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
-+
-+ for (i = 0; i < nr_node_ids; i++)
-+ if (build_numa_sched_groups(&d, cpu_map, i))
-+ goto error;
-+#endif
-+
-+ /* Calculate CPU power for physical packages and nodes */
-+#ifdef CONFIG_SCHED_SMT
-+ for_each_cpu(i, cpu_map) {
-+ sd = &per_cpu(cpu_domains, i).sd;
-+ init_sched_groups_power(i, sd);
-+ }
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ for_each_cpu(i, cpu_map) {
-+ sd = &per_cpu(core_domains, i).sd;
-+ init_sched_groups_power(i, sd);
-+ }
-+#endif
-+#ifdef CONFIG_SCHED_BOOK
-+ for_each_cpu(i, cpu_map) {
-+ sd = &per_cpu(book_domains, i).sd;
-+ init_sched_groups_power(i, sd);
-+ }
-+#endif
-+
-+ for_each_cpu(i, cpu_map) {
-+ sd = &per_cpu(phys_domains, i).sd;
-+ init_sched_groups_power(i, sd);
-+ }
-+
-+#ifdef CONFIG_NUMA
-+ for (i = 0; i < nr_node_ids; i++)
-+ init_numa_sched_groups_power(d.sched_group_nodes[i]);
-+
-+ if (d.sd_allnodes) {
-+ struct sched_group *sg;
-+
-+ cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
-+ d.tmpmask);
-+ init_numa_sched_groups_power(sg);
-+ }
-+#endif
-+
-+ /* Attach the domains */
-+ for_each_cpu(i, cpu_map) {
-+#ifdef CONFIG_SCHED_SMT
-+ sd = &per_cpu(cpu_domains, i).sd;
-+#elif defined(CONFIG_SCHED_MC)
-+ sd = &per_cpu(core_domains, i).sd;
-+#elif defined(CONFIG_SCHED_BOOK)
-+ sd = &per_cpu(book_domains, i).sd;
-+#else
-+ sd = &per_cpu(phys_domains, i).sd;
-+#endif
-+ cpu_attach_domain(sd, d.rd, i);
-+ }
-+
-+ d.sched_group_nodes = NULL; /* don't free this we still need it */
-+ __free_domain_allocs(&d, sa_tmpmask, cpu_map);
-+ return 0;
-+
-+error:
-+ __free_domain_allocs(&d, alloc_state, cpu_map);
-+ return -ENOMEM;
-+}
-+
-+static int build_sched_domains(const struct cpumask *cpu_map)
-+{
-+ return __build_sched_domains(cpu_map, NULL);
-+}
-+
-+static cpumask_var_t *doms_cur; /* current sched domains */
-+static int ndoms_cur; /* number of sched domains in 'doms_cur' */
-+static struct sched_domain_attr *dattr_cur;
-+ /* attribues of custom domains in 'doms_cur' */
-+
-+/*
-+ * Special case: If a kmalloc of a doms_cur partition (array of
-+ * cpumask) fails, then fallback to a single sched domain,
-+ * as determined by the single cpumask fallback_doms.
-+ */
-+static cpumask_var_t fallback_doms;
-+
-+/*
-+ * arch_update_cpu_topology lets virtualised architectures update the
-+ * cpu core maps. It is supposed to return 1 if the topology changed
-+ * or 0 if it stayed the same.
-+ */
-+int __attribute__((weak)) arch_update_cpu_topology(void)
-+{
-+ return 0;
-+}
-+
-+cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
-+{
-+ int i;
-+ cpumask_var_t *doms;
-+
-+ doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
-+ if (!doms)
-+ return NULL;
-+ for (i = 0; i < ndoms; i++) {
-+ if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
-+ free_sched_domains(doms, i);
-+ return NULL;
-+ }
-+ }
-+ return doms;
-+}
-+
-+void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
-+{
-+ unsigned int i;
-+ for (i = 0; i < ndoms; i++)
-+ free_cpumask_var(doms[i]);
-+ kfree(doms);
-+}
-+
-+/*
-+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
-+ * For now this just excludes isolated cpus, but could be used to
-+ * exclude other special cases in the future.
-+ */
-+static int arch_init_sched_domains(const struct cpumask *cpu_map)
-+{
-+ int err;
-+
-+ arch_update_cpu_topology();
-+ ndoms_cur = 1;
-+ doms_cur = alloc_sched_domains(ndoms_cur);
-+ if (!doms_cur)
-+ doms_cur = &fallback_doms;
-+ cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
-+ dattr_cur = NULL;
-+ err = build_sched_domains(doms_cur[0]);
-+ register_sched_domain_sysctl();
-+
-+ return err;
-+}
-+
-+static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
-+ struct cpumask *tmpmask)
-+{
-+ free_sched_groups(cpu_map, tmpmask);
-+}
-+
-+/*
-+ * Detach sched domains from a group of cpus specified in cpu_map
-+ * These cpus will now be attached to the NULL domain
-+ */
-+static void detach_destroy_domains(const struct cpumask *cpu_map)
-+{
-+ /* Save because hotplug lock held. */
-+ static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
-+ int i;
-+
-+ for_each_cpu(i, cpu_map)
-+ cpu_attach_domain(NULL, &def_root_domain, i);
-+ synchronize_sched();
-+ arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
-+}
-+
-+/* handle null as "default" */
-+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-+ struct sched_domain_attr *new, int idx_new)
-+{
-+ struct sched_domain_attr tmp;
-+
-+ /* fast path */
-+ if (!new && !cur)
-+ return 1;
-+
-+ tmp = SD_ATTR_INIT;
-+ return !memcmp(cur ? (cur + idx_cur) : &tmp,
-+ new ? (new + idx_new) : &tmp,
-+ sizeof(struct sched_domain_attr));
-+}
-+
-+/*
-+ * Partition sched domains as specified by the 'ndoms_new'
-+ * cpumasks in the array doms_new[] of cpumasks. This compares
-+ * doms_new[] to the current sched domain partitioning, doms_cur[].
-+ * It destroys each deleted domain and builds each new domain.
-+ *
-+ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
-+ * The masks don't intersect (don't overlap.) We should setup one
-+ * sched domain for each mask. CPUs not in any of the cpumasks will
-+ * not be load balanced. If the same cpumask appears both in the
-+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
-+ * it as it is.
-+ *
-+ * The passed in 'doms_new' should be allocated using
-+ * alloc_sched_domains. This routine takes ownership of it and will
-+ * free_sched_domains it when done with it. If the caller failed the
-+ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
-+ * and partition_sched_domains() will fallback to the single partition
-+ * 'fallback_doms', it also forces the domains to be rebuilt.
-+ *
-+ * If doms_new == NULL it will be replaced with cpu_online_mask.
-+ * ndoms_new == 0 is a special case for destroying existing domains,
-+ * and it will not create the default domain.
-+ *
-+ * Call with hotplug lock held
-+ */
-+void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
-+ struct sched_domain_attr *dattr_new)
-+{
-+ int i, j, n;
-+ int new_topology;
-+
-+ mutex_lock(&sched_domains_mutex);
-+
-+ /* always unregister in case we don't destroy any domains */
-+ unregister_sched_domain_sysctl();
-+
-+ /* Let architecture update cpu core mappings. */
-+ new_topology = arch_update_cpu_topology();
-+
-+ n = doms_new ? ndoms_new : 0;
-+
-+ /* Destroy deleted domains */
-+ for (i = 0; i < ndoms_cur; i++) {
-+ for (j = 0; j < n && !new_topology; j++) {
-+ if (cpumask_equal(doms_cur[i], doms_new[j])
-+ && dattrs_equal(dattr_cur, i, dattr_new, j))
-+ goto match1;
-+ }
-+ /* no match - a current sched domain not in new doms_new[] */
-+ detach_destroy_domains(doms_cur[i]);
-+match1:
-+ ;
-+ }
-+
-+ if (doms_new == NULL) {
-+ ndoms_cur = 0;
-+ doms_new = &fallback_doms;
-+ cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
-+ WARN_ON_ONCE(dattr_new);
-+ }
-+
-+ /* Build new domains */
-+ for (i = 0; i < ndoms_new; i++) {
-+ for (j = 0; j < ndoms_cur && !new_topology; j++) {
-+ if (cpumask_equal(doms_new[i], doms_cur[j])
-+ && dattrs_equal(dattr_new, i, dattr_cur, j))
-+ goto match2;
-+ }
-+ /* no match - add a new doms_new */
-+ __build_sched_domains(doms_new[i],
-+ dattr_new ? dattr_new + i : NULL);
-+match2:
-+ ;
-+ }
-+
-+ /* Remember the new sched domains */
-+ if (doms_cur != &fallback_doms)
-+ free_sched_domains(doms_cur, ndoms_cur);
-+ kfree(dattr_cur); /* kfree(NULL) is safe */
-+ doms_cur = doms_new;
-+ dattr_cur = dattr_new;
-+ ndoms_cur = ndoms_new;
-+
-+ register_sched_domain_sysctl();
-+
-+ mutex_unlock(&sched_domains_mutex);
-+}
-+
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+static void arch_reinit_sched_domains(void)
-+{
-+ get_online_cpus();
-+
-+ /* Destroy domains first to force the rebuild */
-+ partition_sched_domains(0, NULL, NULL);
-+
-+ rebuild_sched_domains();
-+ put_online_cpus();
-+}
-+
-+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
-+{
-+ unsigned int level = 0;
-+
-+ if (sscanf(buf, "%u", &level) != 1)
-+ return -EINVAL;
-+
-+ /*
-+ * level is always be positive so don't check for
-+ * level < POWERSAVINGS_BALANCE_NONE which is 0
-+ * What happens on 0 or 1 byte write,
-+ * need to check for count as well?
-+ */
-+
-+ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
-+ return -EINVAL;
-+
-+ if (smt)
-+ sched_smt_power_savings = level;
-+ else
-+ sched_mc_power_savings = level;
-+
-+ arch_reinit_sched_domains();
-+
-+ return count;
-+}
-+
-+#ifdef CONFIG_SCHED_MC
-+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
-+ struct sysdev_class_attribute *attr,
-+ char *page)
-+{
-+ return sprintf(page, "%u\n", sched_mc_power_savings);
-+}
-+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
-+ struct sysdev_class_attribute *attr,
-+ const char *buf, size_t count)
-+{
-+ return sched_power_savings_store(buf, count, 0);
-+}
-+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
-+ sched_mc_power_savings_show,
-+ sched_mc_power_savings_store);
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
-+ struct sysdev_class_attribute *attr,
-+ char *page)
-+{
-+ return sprintf(page, "%u\n", sched_smt_power_savings);
-+}
-+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
-+ struct sysdev_class_attribute *attr,
-+ const char *buf, size_t count)
-+{
-+ return sched_power_savings_store(buf, count, 1);
-+}
-+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
-+ sched_smt_power_savings_show,
-+ sched_smt_power_savings_store);
-+#endif
-+
-+int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
-+{
-+ int err = 0;
-+
-+#ifdef CONFIG_SCHED_SMT
-+ if (smt_capable())
-+ err = sysfs_create_file(&cls->kset.kobj,
-+ &attr_sched_smt_power_savings.attr);
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ if (!err && mc_capable())
-+ err = sysfs_create_file(&cls->kset.kobj,
-+ &attr_sched_mc_power_savings.attr);
-+#endif
-+ return err;
-+}
-+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-+
-+/*
-+ * Update cpusets according to cpu_active mask. If cpusets are
-+ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
-+ * around partition_sched_domains().
-+ */
-+static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
-+ void *hcpu)
-+{
-+ switch (action & ~CPU_TASKS_FROZEN) {
-+ case CPU_ONLINE:
-+ case CPU_DOWN_FAILED:
-+ cpuset_update_active_cpus();
-+ return NOTIFY_OK;
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+
-+static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
-+ void *hcpu)
-+{
-+ switch (action & ~CPU_TASKS_FROZEN) {
-+ case CPU_DOWN_PREPARE:
-+ cpuset_update_active_cpus();
-+ return NOTIFY_OK;
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+
-+static int update_runtime(struct notifier_block *nfb,
-+ unsigned long action, void *hcpu)
-+{
-+ switch (action) {
-+ case CPU_DOWN_PREPARE:
-+ case CPU_DOWN_PREPARE_FROZEN:
-+ return NOTIFY_OK;
-+
-+ case CPU_DOWN_FAILED:
-+ case CPU_DOWN_FAILED_FROZEN:
-+ case CPU_ONLINE:
-+ case CPU_ONLINE_FROZEN:
-+ return NOTIFY_OK;
-+
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+
-+#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
-+/*
-+ * Cheaper version of the below functions in case support for SMT and MC is
-+ * compiled in but CPUs have no siblings.
-+ */
-+static int sole_cpu_idle(unsigned long cpu)
-+{
-+ return rq_idle(cpu_rq(cpu));
-+}
-+#endif
-+#ifdef CONFIG_SCHED_SMT
-+/* All this CPU's SMT siblings are idle */
-+static int siblings_cpu_idle(unsigned long cpu)
-+{
-+ return cpumask_subset(&(cpu_rq(cpu)->smt_siblings),
-+ &grq.cpu_idle_map);
-+}
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+/* All this CPU's shared cache siblings are idle */
-+static int cache_cpu_idle(unsigned long cpu)
-+{
-+ return cpumask_subset(&(cpu_rq(cpu)->cache_siblings),
-+ &grq.cpu_idle_map);
-+}
-+#endif
-+
-+void __init sched_init_smp(void)
-+{
-+ struct sched_domain *sd;
-+ int cpu, cpus;
-+
-+ cpumask_var_t non_isolated_cpus;
-+
-+ alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
-+ alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
-+
-+#if defined(CONFIG_NUMA)
-+ sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
-+ GFP_KERNEL);
-+ BUG_ON(sched_group_nodes_bycpu == NULL);
-+#endif
-+ get_online_cpus();
-+ mutex_lock(&sched_domains_mutex);
-+ arch_init_sched_domains(cpu_active_mask);
-+ cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-+ if (cpumask_empty(non_isolated_cpus))
-+ cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
-+ mutex_unlock(&sched_domains_mutex);
-+ put_online_cpus();
-+
-+ hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
-+ hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
-+
-+ /* RT runtime code needs to handle some hotplug events */
-+ hotcpu_notifier(update_runtime, 0);
-+
-+ /* Move init over to a non-isolated CPU */
-+ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
-+ BUG();
-+ free_cpumask_var(non_isolated_cpus);
-+
-+ /*
-+ * Assume that every added cpu gives us slightly less overall latency
-+ * allowing us to increase the base rr_interval, non-linearly and with
-+ * an upper bound.
-+ */
-+ cpus = num_online_cpus();
-+ rr_interval = rr_interval * (4 * cpus + 4) / (cpus + 6);
-+
-+ grq_lock_irq();
-+ /*
-+ * Set up the relative cache distance of each online cpu from each
-+ * other in a simple array for quick lookup. Locality is determined
-+ * by the closest sched_domain that CPUs are separated by. CPUs with
-+ * shared cache in SMT and MC are treated as local. Separate CPUs
-+ * (within the same package or physically) within the same node are
-+ * treated as not local. CPUs not even in the same domain (different
-+ * nodes) are treated as very distant.
-+ */
-+ for_each_online_cpu(cpu) {
-+ struct rq *rq = cpu_rq(cpu);
-+ for_each_domain(cpu, sd) {
-+ unsigned long locality;
-+ int other_cpu;
-+
-+#ifdef CONFIG_SCHED_SMT
-+ if (sd->level == SD_LV_SIBLING) {
-+ for_each_cpu_mask(other_cpu, *sched_domain_span(sd))
-+ cpumask_set_cpu(other_cpu, &rq->smt_siblings);
-+ }
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ if (sd->level == SD_LV_MC) {
-+ for_each_cpu_mask(other_cpu, *sched_domain_span(sd))
-+ cpumask_set_cpu(other_cpu, &rq->cache_siblings);
-+ }
-+#endif
-+ if (sd->level <= SD_LV_SIBLING)
-+ locality = 1;
-+ else if (sd->level <= SD_LV_MC)
-+ locality = 2;
-+ else if (sd->level <= SD_LV_NODE)
-+ locality = 3;
-+ else
-+ continue;
-+
-+ for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) {
-+ if (locality < rq->cpu_locality[other_cpu])
-+ rq->cpu_locality[other_cpu] = locality;
-+ }
-+ }
-+
-+/*
-+ * Each runqueue has its own function in case it doesn't have
-+ * siblings of its own allowing mixed topologies.
-+ */
-+#ifdef CONFIG_SCHED_SMT
-+ if (cpus_weight(rq->smt_siblings) > 1)
-+ rq->siblings_idle = siblings_cpu_idle;
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ if (cpus_weight(rq->cache_siblings) > 1)
-+ rq->cache_idle = cache_cpu_idle;
-+#endif
-+ }
-+ grq_unlock_irq();
-+}
-+#else
-+void __init sched_init_smp(void)
-+{
-+}
-+#endif /* CONFIG_SMP */
-+
-+unsigned int sysctl_timer_migration = 1;
-+
-+int in_sched_functions(unsigned long addr)
-+{
-+ return in_lock_functions(addr) ||
-+ (addr >= (unsigned long)__sched_text_start
-+ && addr < (unsigned long)__sched_text_end);
-+}
-+
-+void __init sched_init(void)
-+{
-+ int i;
-+ struct rq *rq;
-+
-+ prio_ratios[0] = 128;
-+ for (i = 1 ; i < PRIO_RANGE ; i++)
-+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
-+
-+ raw_spin_lock_init(&grq.lock);
-+ grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0;
-+ grq.niffies = 0;
-+ grq.last_jiffy = jiffies;
-+ raw_spin_lock_init(&grq.iso_lock);
-+ grq.iso_ticks = grq.iso_refractory = 0;
-+#ifdef CONFIG_SMP
-+ init_defrootdomain();
-+ grq.qnr = grq.idle_cpus = 0;
-+ cpumask_clear(&grq.cpu_idle_map);
-+#else
-+ uprq = &per_cpu(runqueues, 0);
-+#endif
-+ for_each_possible_cpu(i) {
-+ rq = cpu_rq(i);
-+ rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc =
-+ rq->iowait_pc = rq->idle_pc = 0;
-+ rq->dither = 0;
-+#ifdef CONFIG_SMP
-+ rq->last_niffy = 0;
-+ rq->sd = NULL;
-+ rq->rd = NULL;
-+ rq->online = 0;
-+ rq->cpu = i;
-+ rq_attach_root(rq, &def_root_domain);
-+#endif
-+ atomic_set(&rq->nr_iowait, 0);
-+ }
-+
-+#ifdef CONFIG_SMP
-+ nr_cpu_ids = i;
-+ /*
-+ * Set the base locality for cpu cache distance calculation to
-+ * "distant" (3). Make sure the distance from a CPU to itself is 0.
-+ */
-+ for_each_possible_cpu(i) {
-+ int j;
-+
-+ rq = cpu_rq(i);
-+#ifdef CONFIG_SCHED_SMT
-+ cpumask_clear(&rq->smt_siblings);
-+ cpumask_set_cpu(i, &rq->smt_siblings);
-+ rq->siblings_idle = sole_cpu_idle;
-+ cpumask_set_cpu(i, &rq->smt_siblings);
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ cpumask_clear(&rq->cache_siblings);
-+ cpumask_set_cpu(i, &rq->cache_siblings);
-+ rq->cache_idle = sole_cpu_idle;
-+ cpumask_set_cpu(i, &rq->cache_siblings);
-+#endif
-+ rq->cpu_locality = kmalloc(nr_cpu_ids * sizeof(unsigned long),
-+ GFP_NOWAIT);
-+ for_each_possible_cpu(j) {
-+ if (i == j)
-+ rq->cpu_locality[j] = 0;
-+ else
-+ rq->cpu_locality[j] = 4;
-+ }
-+ }
-+#endif
-+
-+ for (i = 0; i < PRIO_LIMIT; i++)
-+ INIT_LIST_HEAD(grq.queue + i);
-+ /* delimiter for bitsearch */
-+ __set_bit(PRIO_LIMIT, grq.prio_bitmap);
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+ INIT_HLIST_HEAD(&init_task.preempt_notifiers);
-+#endif
-+
-+#ifdef CONFIG_RT_MUTEXES
-+ plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
-+#endif
-+
-+ /*
-+ * The boot idle thread does lazy MMU switching as well:
-+ */
-+ atomic_inc(&init_mm.mm_count);
-+ enter_lazy_tlb(&init_mm, current);
-+
-+ /*
-+ * Make us the idle thread. Technically, schedule() should not be
-+ * called from this thread, however somewhere below it might be,
-+ * but because we are the idle thread, we just pick up running again
-+ * when this runqueue becomes "idle".
-+ */
-+ init_idle(current, smp_processor_id());
-+
-+ /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
-+ zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
-+#ifdef CONFIG_SMP
-+ /* May be allocated at isolcpus cmdline parse time */
-+ if (cpu_isolated_map == NULL)
-+ zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
-+#endif /* SMP */
-+ perf_event_init();
-+}
-+
-+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-+static inline int preempt_count_equals(int preempt_offset)
-+{
-+ int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
-+
-+ return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
-+}
-+
-+void __might_sleep(const char *file, int line, int preempt_offset)
-+{
-+#ifdef in_atomic
-+ static unsigned long prev_jiffy; /* ratelimiting */
-+
-+ if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
-+ system_state != SYSTEM_RUNNING || oops_in_progress)
-+ return;
-+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-+ return;
-+ prev_jiffy = jiffies;
-+
-+ printk(KERN_ERR
-+ "BUG: sleeping function called from invalid context at %s:%d\n",
-+ file, line);
-+ printk(KERN_ERR
-+ "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
-+ in_atomic(), irqs_disabled(),
-+ current->pid, current->comm);
-+
-+ debug_show_held_locks(current);
-+ if (irqs_disabled())
-+ print_irqtrace_events(current);
-+ dump_stack();
-+#endif
-+}
-+EXPORT_SYMBOL(__might_sleep);
-+#endif
-+
-+#ifdef CONFIG_MAGIC_SYSRQ
-+void normalize_rt_tasks(void)
-+{
-+ struct task_struct *g, *p;
-+ unsigned long flags;
-+ struct rq *rq;
-+ int queued;
-+
-+ read_lock_irq(&tasklist_lock);
-+
-+ do_each_thread(g, p) {
-+ if (!rt_task(p) && !iso_task(p))
-+ continue;
-+
-+ raw_spin_lock_irqsave(&p->pi_lock, flags);
-+ rq = __task_grq_lock(p);
-+
-+ queued = task_queued(p);
-+ if (queued)
-+ dequeue_task(p);
-+ __setscheduler(p, rq, SCHED_NORMAL, 0);
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p, rq);
-+ }
-+
-+ __task_grq_unlock();
-+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
-+ } while_each_thread(g, p);
-+
-+ read_unlock_irq(&tasklist_lock);
-+}
-+#endif /* CONFIG_MAGIC_SYSRQ */
-+
-+#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
-+/*
-+ * These functions are only useful for the IA64 MCA handling, or kdb.
-+ *
-+ * They can only be called when the whole system has been
-+ * stopped - every CPU needs to be quiescent, and no scheduling
-+ * activity can take place. Using them for anything else would
-+ * be a serious bug, and as a result, they aren't even visible
-+ * under any other configuration.
-+ */
-+
-+/**
-+ * curr_task - return the current task for a given cpu.
-+ * @cpu: the processor in question.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ */
-+struct task_struct *curr_task(int cpu)
-+{
-+ return cpu_curr(cpu);
-+}
-+
-+#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
-+
-+#ifdef CONFIG_IA64
-+/**
-+ * set_curr_task - set the current task for a given cpu.
-+ * @cpu: the processor in question.
-+ * @p: the task pointer to set.
-+ *
-+ * Description: This function must only be used when non-maskable interrupts
-+ * are serviced on a separate stack. It allows the architecture to switch the
-+ * notion of the current task on a cpu in a non-blocking manner. This function
-+ * must be called with all CPU's synchronised, and interrupts disabled, the
-+ * and caller must save the original value of the current task (see
-+ * curr_task() above) and restore that value before reenabling interrupts and
-+ * re-starting the system.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ */
-+void set_curr_task(int cpu, struct task_struct *p)
-+{
-+ cpu_curr(cpu) = p;
-+}
-+
-+#endif
-+
-+/*
-+ * Use precise platform statistics if available:
-+ */
-+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
-+void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-+{
-+ *ut = p->utime;
-+ *st = p->stime;
-+}
-+
-+void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-+{
-+ struct task_cputime cputime;
-+
-+ thread_group_cputime(p, &cputime);
-+
-+ *ut = cputime.utime;
-+ *st = cputime.stime;
-+}
-+#else
-+
-+#ifndef nsecs_to_cputime
-+# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
-+#endif
-+
-+void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-+{
-+ cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
-+
-+ rtime = nsecs_to_cputime(p->sched_time);
-+
-+ if (total) {
-+ u64 temp;
-+
-+ temp = (u64)(rtime * utime);
-+ do_div(temp, total);
-+ utime = (cputime_t)temp;
-+ } else
-+ utime = rtime;
-+
-+ /*
-+ * Compare with previous values, to keep monotonicity:
-+ */
-+ p->prev_utime = max(p->prev_utime, utime);
-+ p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
-+
-+ *ut = p->prev_utime;
-+ *st = p->prev_stime;
-+}
-+
-+/*
-+ * Must be called with siglock held.
-+ */
-+void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
-+{
-+ struct signal_struct *sig = p->signal;
-+ struct task_cputime cputime;
-+ cputime_t rtime, utime, total;
-+
-+ thread_group_cputime(p, &cputime);
-+
-+ total = cputime_add(cputime.utime, cputime.stime);
-+ rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
-+
-+ if (total) {
-+ u64 temp;
-+
-+ temp = (u64)(rtime * cputime.utime);
-+ do_div(temp, total);
-+ utime = (cputime_t)temp;
-+ } else
-+ utime = rtime;
-+
-+ sig->prev_utime = max(sig->prev_utime, utime);
-+ sig->prev_stime = max(sig->prev_stime,
-+ cputime_sub(rtime, sig->prev_utime));
-+
-+ *ut = sig->prev_utime;
-+ *st = sig->prev_stime;
-+}
-+#endif
-+
-+inline cputime_t task_gtime(struct task_struct *p)
-+{
-+ return p->gtime;
-+}
-+
-+void __cpuinit init_idle_bootup_task(struct task_struct *idle)
-+{}
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
-+{}
-+
-+void proc_sched_set_task(struct task_struct *p)
-+{}
-+#endif
-+
-+/* No RCU torture test support */
-+void synchronize_sched_expedited(void)
-+{
-+ barrier();
-+}
-+EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
-+
-+#ifdef CONFIG_SMP
-+unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
-+{
-+ return SCHED_LOAD_SCALE;
-+}
-+
-+unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
-+{
-+ unsigned long weight = cpumask_weight(sched_domain_span(sd));
-+ unsigned long smt_gain = sd->smt_gain;
-+
-+ smt_gain /= weight;
-+
-+ return smt_gain;
-+}
-+#endif
-Index: linux-2.6.37-ck2/kernel/sched.c
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/sched.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/kernel/sched.c 2011-02-14 09:47:50.994252001 +1100
-@@ -1,3 +1,6 @@
-+#ifdef CONFIG_SCHED_BFS
-+#include "sched_bfs.c"
-+#else
- /*
- * kernel/sched.c
- *
-@@ -9603,3 +9606,4 @@
- EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
-
- #endif /* #else #ifndef CONFIG_SMP */
-+#endif /* CONFIG_SCHED_BFS */
-Index: linux-2.6.37-ck2/kernel/sysctl.c
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/sysctl.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/kernel/sysctl.c 2011-02-14 09:47:50.995252001 +1100
-@@ -117,7 +117,12 @@
- static int __maybe_unused one = 1;
- static int __maybe_unused two = 2;
- static unsigned long one_ul = 1;
--static int one_hundred = 100;
-+static int __maybe_unused one_hundred = 100;
-+#ifdef CONFIG_SCHED_BFS
-+extern int rr_interval;
-+extern int sched_iso_cpu;
-+static int __read_mostly one_thousand = 1000;
-+#endif
- #ifdef CONFIG_PRINTK
- static int ten_thousand = 10000;
- #endif
-@@ -252,7 +257,7 @@
- { }
- };
-
--#ifdef CONFIG_SCHED_DEBUG
-+#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_BFS)
- static int min_sched_granularity_ns = 100000; /* 100 usecs */
- static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */
- static int min_wakeup_granularity_ns; /* 0 usecs */
-@@ -269,6 +274,7 @@
- #endif
-
- static struct ctl_table kern_table[] = {
-+#ifndef CONFIG_SCHED_BFS
- {
- .procname = "sched_child_runs_first",
- .data = &sysctl_sched_child_runs_first,
-@@ -382,6 +388,7 @@
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
-+#endif /* !CONFIG_SCHED_BFS */
- #ifdef CONFIG_PROVE_LOCKING
- {
- .procname = "prove_locking",
-@@ -815,6 +822,26 @@
- .proc_handler = proc_dointvec,
- },
- #endif
-+#ifdef CONFIG_SCHED_BFS
-+ {
-+ .procname = "rr_interval",
-+ .data = &rr_interval,
-+ .maxlen = sizeof (int),
-+ .mode = 0644,
-+ .proc_handler = &proc_dointvec_minmax,
-+ .extra1 = &one,
-+ .extra2 = &one_thousand,
-+ },
-+ {
-+ .procname = "iso_cpu",
-+ .data = &sched_iso_cpu,
-+ .maxlen = sizeof (int),
-+ .mode = 0644,
-+ .proc_handler = &proc_dointvec_minmax,
-+ .extra1 = &zero,
-+ .extra2 = &one_hundred,
-+ },
-+#endif
- #if defined(CONFIG_S390) && defined(CONFIG_SMP)
- {
- .procname = "spin_retry",
-Index: linux-2.6.37-ck2/lib/Kconfig.debug
-===================================================================
---- linux-2.6.37-ck2.orig/lib/Kconfig.debug 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/lib/Kconfig.debug 2011-02-14 09:47:50.995252001 +1100
-@@ -833,7 +833,7 @@
-
- config RCU_TORTURE_TEST
- tristate "torture tests for RCU"
-- depends on DEBUG_KERNEL
-+ depends on DEBUG_KERNEL && !SCHED_BFS
- default n
- help
- This option provides a kernel module that runs torture tests
-Index: linux-2.6.37-ck2/include/linux/jiffies.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/jiffies.h 2010-02-25 21:51:52.000000000 +1100
-+++ linux-2.6.37-ck2/include/linux/jiffies.h 2011-02-14 09:47:50.995252001 +1100
-@@ -164,7 +164,7 @@
- * Have the 32 bit jiffies value wrap 5 minutes after boot
- * so jiffies wrap bugs show up earlier.
- */
--#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
-+#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-10*HZ))
-
- /*
- * Change timeval to jiffies, trying to avoid the
-Index: linux-2.6.37-ck2/mm/vmscan.c
-===================================================================
---- linux-2.6.37-ck2.orig/mm/vmscan.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/mm/vmscan.c 2011-02-14 10:11:01.693252000 +1100
-@@ -36,6 +36,7 @@
- #include <linux/rwsem.h>
- #include <linux/delay.h>
- #include <linux/kthread.h>
-+#include <linux/timer.h>
- #include <linux/freezer.h>
- #include <linux/memcontrol.h>
- #include <linux/delayacct.h>
-@@ -133,7 +134,7 @@
- /*
- * From 0 .. 100. Higher means more swappy.
- */
--int vm_swappiness = 60;
-+int vm_swappiness;
- long vm_total_pages; /* The total number of pages which the VM controls */
-
- static LIST_HEAD(shrinker_list);
-@@ -900,7 +901,7 @@
-
- activate_locked:
- /* Not a candidate for swapping, so reclaim swap space. */
-- if (PageSwapCache(page) && vm_swap_full())
-+ if (PageSwapCache(page))
- try_to_free_swap(page);
- VM_BUG_ON(PageActive(page));
- SetPageActive(page);
-@@ -1855,6 +1856,35 @@
- }
-
- /*
-+ * Helper functions to adjust nice level of kswapd, based on the priority of
-+ * the task (p) that called it. If it is already higher priority we do not
-+ * demote its nice level since it is still working on behalf of a higher
-+ * priority task. With kernel threads we leave it at nice 0.
-+ *
-+ * We don't ever run kswapd real time, so if a real time task calls kswapd we
-+ * set it to highest SCHED_NORMAL priority.
-+ */
-+static inline int effective_sc_prio(struct task_struct *p)
-+{
-+ if (likely(p->mm)) {
-+ if (rt_task(p))
-+ return -20;
-+ if (p->policy == SCHED_IDLEPRIO)
-+ return 19;
-+ return task_nice(p);
-+ }
-+ return 0;
-+}
-+
-+static void set_kswapd_nice(struct task_struct *kswapd, int active)
-+{
-+ long nice = effective_sc_prio(current);
-+
-+ if (task_nice(kswapd) > nice || !active)
-+ set_user_nice(kswapd, nice);
-+}
-+
-+/*
- * This is the direct reclaim path, for page-allocating processes. We only
- * try to reclaim pages from zones which will satisfy the caller's allocation
- * request.
-@@ -2371,6 +2401,8 @@
- return sc.nr_reclaimed;
- }
-
-+#define WT_EXPIRY (HZ * 5) /* Time to wakeup watermark_timer */
-+
- /*
- * The background pageout daemon, started as a kernel thread
- * from the init process.
-@@ -2421,6 +2453,8 @@
- unsigned long new_order;
- int ret;
-
-+ /* kswapd has been busy so delay watermark_timer */
-+ mod_timer(&pgdat->watermark_timer, jiffies + WT_EXPIRY);
- prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
- new_order = pgdat->kswapd_max_order;
- pgdat->kswapd_max_order = 0;
-@@ -2457,6 +2491,7 @@
- }
- }
-
-+ set_user_nice(tsk, 0);
- order = pgdat->kswapd_max_order;
- }
- finish_wait(&pgdat->kswapd_wait, &wait);
-@@ -2483,6 +2518,7 @@
- void wakeup_kswapd(struct zone *zone, int order)
- {
- pg_data_t *pgdat;
-+ int active;
-
- if (!populated_zone(zone))
- return;
-@@ -2495,7 +2531,9 @@
- pgdat = zone->zone_pgdat;
- if (pgdat->kswapd_max_order < order)
- pgdat->kswapd_max_order = order;
-- if (!waitqueue_active(&pgdat->kswapd_wait))
-+ active = waitqueue_active(&pgdat->kswapd_wait);
-+ set_kswapd_nice(pgdat->kswapd, active);
-+ if (!active)
- return;
- if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
- return;
-@@ -2601,20 +2639,57 @@
- }
-
- /*
-+ * We wake up kswapd every WT_EXPIRY till free ram is above pages_lots
-+ */
-+static void watermark_wakeup(unsigned long data)
-+{
-+ pg_data_t *pgdat = (pg_data_t *)data;
-+ struct timer_list *wt = &pgdat->watermark_timer;
-+ int i;
-+
-+ if (!waitqueue_active(&pgdat->kswapd_wait) || above_background_load())
-+ goto out;
-+ for (i = pgdat->nr_zones - 1; i >= 0; i--) {
-+ struct zone *z = pgdat->node_zones + i;
-+
-+ if (!populated_zone(z) || is_highmem(z)) {
-+ /* We are better off leaving highmem full */
-+ continue;
-+ }
-+ if (!zone_watermark_ok(z, 0, lots_wmark_pages(z), 0, 0)) {
-+ wake_up_interruptible(&pgdat->kswapd_wait);
-+ goto out;
-+ }
-+ }
-+out:
-+ mod_timer(wt, jiffies + WT_EXPIRY);
-+ return;
-+}
-+
-+/*
- * This kswapd start function will be called by init and node-hot-add.
- * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
- */
- int kswapd_run(int nid)
- {
- pg_data_t *pgdat = NODE_DATA(nid);
-+ struct timer_list *wt;
- int ret = 0;
-
- if (pgdat->kswapd)
- return 0;
-
-+ wt = &pgdat->watermark_timer;
-+ init_timer(wt);
-+ wt->data = (unsigned long)pgdat;
-+ wt->function = watermark_wakeup;
-+ wt->expires = jiffies + WT_EXPIRY;
-+ add_timer(wt);
-+
- pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
- if (IS_ERR(pgdat->kswapd)) {
- /* failure at boot is fatal */
-+ del_timer(wt);
- BUG_ON(system_state == SYSTEM_BOOTING);
- printk("Failed to start kswapd on node %d\n",nid);
- ret = -1;
-Index: linux-2.6.37-ck2/include/linux/swap.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/swap.h 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/include/linux/swap.h 2011-02-14 10:11:09.770252000 +1100
-@@ -192,7 +192,7 @@
- int next; /* swapfile to be used next */
- };
-
--/* Swap 50% full? Release swapcache more aggressively.. */
-+/* Swap 50% full? */
- #define vm_swap_full() (nr_swap_pages*2 < total_swap_pages)
-
- /* linux/mm/page_alloc.c */
-@@ -206,6 +206,7 @@
-
-
- /* linux/mm/swap.c */
-+extern void ____lru_cache_add(struct page *, enum lru_list lru, int tail);
- extern void __lru_cache_add(struct page *, enum lru_list lru);
- extern void lru_cache_add_lru(struct page *, enum lru_list lru);
- extern void activate_page(struct page *);
-@@ -226,9 +227,14 @@
- __lru_cache_add(page, LRU_INACTIVE_ANON);
- }
-
-+static inline void lru_cache_add_file_tail(struct page *page, int tail)
-+{
-+ ____lru_cache_add(page, LRU_INACTIVE_FILE, tail);
-+}
-+
- static inline void lru_cache_add_file(struct page *page)
- {
-- __lru_cache_add(page, LRU_INACTIVE_FILE);
-+ ____lru_cache_add(page, LRU_INACTIVE_FILE, 0);
- }
-
- /* LRU Isolation modes. */
-@@ -348,9 +354,10 @@
- extern void grab_swap_token(struct mm_struct *);
- extern void __put_swap_token(struct mm_struct *);
-
-+/* Only allow swap token to have effect if swap is full */
- static inline int has_swap_token(struct mm_struct *mm)
- {
-- return (mm == swap_token_mm);
-+ return (mm == swap_token_mm && vm_swap_full());
- }
-
- static inline void put_swap_token(struct mm_struct *mm)
-Index: linux-2.6.37-ck2/mm/memory.c
-===================================================================
---- linux-2.6.37-ck2.orig/mm/memory.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/mm/memory.c 2011-02-14 10:11:00.984252001 +1100
-@@ -2754,7 +2754,7 @@
- mem_cgroup_commit_charge_swapin(page, ptr);
-
- swap_free(entry);
-- if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
-+ if ((vma->vm_flags & VM_LOCKED) || PageMlocked(page))
- try_to_free_swap(page);
- unlock_page(page);
- if (swapcache) {
-Index: linux-2.6.37-ck2/mm/swapfile.c
-===================================================================
---- linux-2.6.37-ck2.orig/mm/swapfile.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/mm/swapfile.c 2011-02-14 10:11:00.985252001 +1100
-@@ -321,7 +321,7 @@
- scan_base = offset = si->lowest_bit;
-
- /* reuse swap entry of cache-only swap if not busy. */
-- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
-+ if (si->swap_map[offset] == SWAP_HAS_CACHE) {
- int swap_was_freed;
- spin_unlock(&swap_lock);
- swap_was_freed = __try_to_reclaim_swap(si, offset);
-@@ -410,7 +410,7 @@
- spin_lock(&swap_lock);
- goto checks;
- }
-- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
-+ if (si->swap_map[offset] == SWAP_HAS_CACHE) {
- spin_lock(&swap_lock);
- goto checks;
- }
-@@ -425,7 +425,7 @@
- spin_lock(&swap_lock);
- goto checks;
- }
-- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
-+ if (si->swap_map[offset] == SWAP_HAS_CACHE) {
- spin_lock(&swap_lock);
- goto checks;
- }
-@@ -739,8 +739,7 @@
- * Not mapped elsewhere, or swap space full? Free it!
- * Also recheck PageSwapCache now page is locked (above).
- */
-- if (PageSwapCache(page) && !PageWriteback(page) &&
-- (!page_mapped(page) || vm_swap_full())) {
-+ if (PageSwapCache(page) && !PageWriteback(page)) {
- delete_from_swap_cache(page);
- SetPageDirty(page);
- }
-Index: linux-2.6.37-ck2/include/linux/mmzone.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/mmzone.h 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/include/linux/mmzone.h 2011-02-14 10:11:01.470252001 +1100
-@@ -15,6 +15,7 @@
- #include <linux/seqlock.h>
- #include <linux/nodemask.h>
- #include <linux/pageblock-flags.h>
-+#include <linux/timer.h>
- #include <generated/bounds.h>
- #include <asm/atomic.h>
- #include <asm/page.h>
-@@ -161,12 +162,14 @@
- WMARK_MIN,
- WMARK_LOW,
- WMARK_HIGH,
-+ WMARK_LOTS,
- NR_WMARK
- };
-
- #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
- #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
- #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
-+#define lots_wmark_pages(z) (z->watermark[WMARK_LOTS])
-
- struct per_cpu_pages {
- int count; /* number of pages in the list */
-@@ -343,7 +346,7 @@
- ZONE_PADDING(_pad1_)
-
- /* Fields commonly accessed by the page reclaim scanner */
-- spinlock_t lru_lock;
-+ spinlock_t lru_lock;
- struct zone_lru {
- struct list_head list;
- } lru[NR_LRU_LISTS];
-@@ -645,6 +648,7 @@
- wait_queue_head_t kswapd_wait;
- struct task_struct *kswapd;
- int kswapd_max_order;
-+ struct timer_list watermark_timer;
- } pg_data_t;
-
- #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
-Index: linux-2.6.37-ck2/include/linux/mm_inline.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/mm_inline.h 2009-12-03 21:40:09.000000000 +1100
-+++ linux-2.6.37-ck2/include/linux/mm_inline.h 2011-02-14 10:11:09.770252000 +1100
-@@ -20,14 +20,24 @@
- }
-
- static inline void
--add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l)
-+__add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l, int tail)
- {
-- list_add(&page->lru, &zone->lru[l].list);
-+ /* See if this should be added to the tail of this lru list */
-+ if (tail)
-+ list_add_tail(&page->lru, &zone->lru[l].list);
-+ else
-+ list_add(&page->lru, &zone->lru[l].list);
- __inc_zone_state(zone, NR_LRU_BASE + l);
- mem_cgroup_add_lru_list(page, l);
- }
-
- static inline void
-+add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l)
-+{
-+ __add_page_to_lru_list(zone, page, l, 0);
-+}
-+
-+static inline void
- del_page_from_lru_list(struct zone *zone, struct page *page, enum lru_list l)
- {
- list_del(&page->lru);
-Index: linux-2.6.37-ck2/mm/filemap.c
-===================================================================
---- linux-2.6.37-ck2.orig/mm/filemap.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/mm/filemap.c 2011-02-14 10:11:09.772252000 +1100
-@@ -439,8 +439,8 @@
- }
- EXPORT_SYMBOL(add_to_page_cache_locked);
-
--int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
-- pgoff_t offset, gfp_t gfp_mask)
-+int __add_to_page_cache_lru(struct page *page, struct address_space *mapping,
-+ pgoff_t offset, gfp_t gfp_mask, int tail)
- {
- int ret;
-
-@@ -456,12 +456,18 @@
- ret = add_to_page_cache(page, mapping, offset, gfp_mask);
- if (ret == 0) {
- if (page_is_file_cache(page))
-- lru_cache_add_file(page);
-+ lru_cache_add_file_tail(page, tail);
- else
- lru_cache_add_anon(page);
- }
- return ret;
- }
-+
-+int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
-+ pgoff_t offset, gfp_t gfp_mask)
-+{
-+ return __add_to_page_cache_lru(page, mapping, offset, gfp_mask, 0);
-+}
- EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
-
- #ifdef CONFIG_NUMA
-@@ -968,6 +974,28 @@
- ra->ra_pages /= 4;
- }
-
-+static inline int nr_mapped(void)
-+{
-+ return global_page_state(NR_FILE_MAPPED) +
-+ global_page_state(NR_ANON_PAGES);
-+}
-+
-+/*
-+ * This examines how large in pages a file size is and returns 1 if it is
-+ * more than half the unmapped ram. Avoid doing read_page_state which is
-+ * expensive unless we already know it is likely to be large enough.
-+ */
-+static int large_isize(unsigned long nr_pages)
-+{
-+ if (nr_pages * 6 > vm_total_pages) {
-+ unsigned long unmapped_ram = vm_total_pages - nr_mapped();
-+
-+ if (nr_pages * 2 > unmapped_ram)
-+ return 1;
-+ }
-+ return 0;
-+}
-+
- /**
- * do_generic_file_read - generic file read routine
- * @filp: the file to read
-@@ -992,7 +1020,7 @@
- pgoff_t prev_index;
- unsigned long offset; /* offset into pagecache page */
- unsigned int prev_offset;
-- int error;
-+ int error, tail = 0;
-
- index = *ppos >> PAGE_CACHE_SHIFT;
- prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
-@@ -1003,7 +1031,7 @@
- for (;;) {
- struct page *page;
- pgoff_t end_index;
-- loff_t isize;
-+ loff_t isize = 0;
- unsigned long nr, ret;
-
- cond_resched();
-@@ -1177,8 +1205,16 @@
- desc->error = -ENOMEM;
- goto out;
- }
-- error = add_to_page_cache_lru(page, mapping,
-- index, GFP_KERNEL);
-+ /*
-+ * If we know the file is large we add the pages read to the
-+ * end of the lru as we're unlikely to be able to cache the
-+ * whole file in ram so make those pages the first to be
-+ * dropped if not referenced soon.
-+ */
-+ if (large_isize(end_index))
-+ tail = 1;
-+ error = __add_to_page_cache_lru(page, mapping,
-+ index, GFP_KERNEL, tail);
- if (error) {
- page_cache_release(page);
- if (error == -EEXIST)
-Index: linux-2.6.37-ck2/mm/swap.c
-===================================================================
---- linux-2.6.37-ck2.orig/mm/swap.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/mm/swap.c 2011-02-14 10:11:09.772252000 +1100
-@@ -215,15 +215,23 @@
-
- EXPORT_SYMBOL(mark_page_accessed);
-
--void __lru_cache_add(struct page *page, enum lru_list lru)
-+void ______pagevec_lru_add(struct pagevec *pvec, enum lru_list lru, int tail);
-+
-+void ____lru_cache_add(struct page *page, enum lru_list lru, int tail)
- {
- struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
-
- page_cache_get(page);
- if (!pagevec_add(pvec, page))
-- ____pagevec_lru_add(pvec, lru);
-+ ______pagevec_lru_add(pvec, lru, tail);
- put_cpu_var(lru_add_pvecs);
- }
-+EXPORT_SYMBOL(____lru_cache_add);
-+
-+void __lru_cache_add(struct page *page, enum lru_list lru)
-+{
-+ ____lru_cache_add(page, lru, 0);
-+}
- EXPORT_SYMBOL(__lru_cache_add);
-
- /**
-@@ -231,7 +239,7 @@
- * @page: the page to be added to the LRU.
- * @lru: the LRU list to which the page is added.
- */
--void lru_cache_add_lru(struct page *page, enum lru_list lru)
-+void __lru_cache_add_lru(struct page *page, enum lru_list lru, int tail)
- {
- if (PageActive(page)) {
- VM_BUG_ON(PageUnevictable(page));
-@@ -242,7 +250,12 @@
- }
-
- VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
-- __lru_cache_add(page, lru);
-+ ____lru_cache_add(page, lru, tail);
-+}
-+
-+void lru_cache_add_lru(struct page *page, enum lru_list lru)
-+{
-+ __lru_cache_add_lru(page, lru, 0);
- }
-
- /**
-@@ -403,7 +416,7 @@
- * Add the passed pages to the LRU, then drop the caller's refcount
- * on them. Reinitialises the caller's pagevec.
- */
--void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
-+void ______pagevec_lru_add(struct pagevec *pvec, enum lru_list lru, int tail)
- {
- int i;
- struct zone *zone = NULL;
-@@ -431,7 +444,7 @@
- if (active)
- SetPageActive(page);
- update_page_reclaim_stat(zone, page, file, active);
-- add_page_to_lru_list(zone, page, lru);
-+ __add_page_to_lru_list(zone, page, lru, tail);
- }
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
-@@ -439,6 +452,11 @@
- pagevec_reinit(pvec);
- }
-
-+void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
-+{
-+ ______pagevec_lru_add(pvec, lru, 0);
-+}
-+
- EXPORT_SYMBOL(____pagevec_lru_add);
-
- /*
-Index: linux-2.6.37-ck2/mm/page-writeback.c
-===================================================================
---- linux-2.6.37-ck2.orig/mm/page-writeback.c 2011-01-06 14:04:10.000000000 +1100
-+++ linux-2.6.37-ck2/mm/page-writeback.c 2011-02-14 10:11:10.037252000 +1100
-@@ -78,7 +78,7 @@
- /*
- * The generator of dirty data starts writeback at this percentage
- */
--int vm_dirty_ratio = 20;
-+int vm_dirty_ratio = 5;
-
- /*
- * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
-Index: linux-2.6.37-ck2/arch/x86/Kconfig
-===================================================================
---- linux-2.6.37-ck2.orig/arch/x86/Kconfig 2011-01-06 14:04:08.000000000 +1100
-+++ linux-2.6.37-ck2/arch/x86/Kconfig 2011-02-14 10:11:10.260252001 +1100
-@@ -1046,7 +1046,7 @@
-
- choice
- depends on EXPERIMENTAL
-- prompt "Memory split" if EMBEDDED
-+ prompt "Memory split"
- default VMSPLIT_3G
- depends on X86_32
- ---help---
-@@ -1066,17 +1066,17 @@
- option alone!
-
- config VMSPLIT_3G
-- bool "3G/1G user/kernel split"
-+ bool "Default 896MB lowmem (3G/1G user/kernel split)"
- config VMSPLIT_3G_OPT
- depends on !X86_PAE
-- bool "3G/1G user/kernel split (for full 1G low memory)"
-+ bool "1GB lowmem (3G/1G user/kernel split)"
- config VMSPLIT_2G
-- bool "2G/2G user/kernel split"
-+ bool "2GB lowmem (2G/2G user/kernel split)"
- config VMSPLIT_2G_OPT
- depends on !X86_PAE
-- bool "2G/2G user/kernel split (for full 2G low memory)"
-+ bool "2GB lowmem (2G/2G user/kernel split)"
- config VMSPLIT_1G
-- bool "1G/3G user/kernel split"
-+ bool "3GB lowmem (1G/3G user/kernel split)"
- endchoice
-
- config PAGE_OFFSET
-Index: linux-2.6.37-ck2/kernel/Kconfig.hz
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/Kconfig.hz 2009-06-10 13:05:27.000000000 +1000
-+++ linux-2.6.37-ck2/kernel/Kconfig.hz 2011-02-14 10:11:10.921252001 +1100
-@@ -4,7 +4,7 @@
-
- choice
- prompt "Timer frequency"
-- default HZ_250
-+ default HZ_1000
- help
- Allows the configuration of the timer frequency. It is customary
- to have the timer interrupt run at 1000 Hz but 100 Hz may be more
-@@ -23,13 +23,14 @@
- with lots of processors that may show reduced performance if
- too many timer interrupts are occurring.
-
-- config HZ_250
-+ config HZ_250_NODEFAULT
- bool "250 HZ"
- help
-- 250 Hz is a good compromise choice allowing server performance
-- while also showing good interactive responsiveness even
-- on SMP and NUMA systems. If you are going to be using NTSC video
-- or multimedia, selected 300Hz instead.
-+ 250 HZ is a lousy compromise choice allowing server interactivity
-+ while also showing desktop throughput and no extra power saving on
-+ laptops. No good for anything.
-+
-+ Recommend 100 or 1000 instead.
-
- config HZ_300
- bool "300 HZ"
-@@ -43,16 +44,82 @@
- bool "1000 HZ"
- help
- 1000 Hz is the preferred choice for desktop systems and other
-- systems requiring fast interactive responses to events.
-+ systems requiring fast interactive responses to events. Laptops
-+ can also benefit from this choice without sacrificing battery life
-+ if dynticks is also enabled.
-+
-+ config HZ_1500
-+ bool "1500 HZ"
-+ help
-+ 1500 Hz is an insane value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-+ config HZ_2000
-+ bool "2000 HZ"
-+ help
-+ 2000 Hz is an insane value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-+ config HZ_3000
-+ bool "3000 HZ"
-+ help
-+ 3000 Hz is an insane value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-+ config HZ_4000
-+ bool "4000 HZ"
-+ help
-+ 4000 Hz is an insane value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-+ config HZ_5000
-+ bool "5000 HZ"
-+ help
-+ 5000 Hz is an obscene value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-+ config HZ_7500
-+ bool "7500 HZ"
-+ help
-+ 7500 Hz is an obscene value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-+ config HZ_10000
-+ bool "10000 HZ"
-+ help
-+ 10000 Hz is an obscene value to use to run broken software that is Hz
-+ limited.
-+
-+ Being over 1000, driver breakage is likely.
-+
-
- endchoice
-
- config HZ
- int
- default 100 if HZ_100
-- default 250 if HZ_250
-+ default 250 if HZ_250_NODEFAULT
- default 300 if HZ_300
- default 1000 if HZ_1000
-+ default 1500 if HZ_1500
-+ default 2000 if HZ_2000
-+ default 3000 if HZ_3000
-+ default 4000 if HZ_4000
-+ default 5000 if HZ_5000
-+ default 7500 if HZ_7500
-+ default 10000 if HZ_10000
-
- config SCHED_HRTICK
- def_bool HIGH_RES_TIMERS && (!SMP || USE_GENERIC_SMP_HELPERS)
-Index: linux-2.6.37-ck2/arch/x86/kernel/cpu/proc.c
-===================================================================
---- linux-2.6.37-ck2.orig/arch/x86/kernel/cpu/proc.c 2009-12-03 21:39:58.000000000 +1100
-+++ linux-2.6.37-ck2/arch/x86/kernel/cpu/proc.c 2011-02-14 10:11:10.919252001 +1100
-@@ -109,7 +109,7 @@
-
- seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
- c->loops_per_jiffy/(500000/HZ),
-- (c->loops_per_jiffy/(5000/HZ)) % 100);
-+ (c->loops_per_jiffy * 10 /(50000/HZ)) % 100);
-
- #ifdef CONFIG_X86_64
- if (c->x86_tlbsize > 0)
-Index: linux-2.6.37-ck2/arch/x86/kernel/smpboot.c
-===================================================================
---- linux-2.6.37-ck2.orig/arch/x86/kernel/smpboot.c 2011-01-06 14:04:08.000000000 +1100
-+++ linux-2.6.37-ck2/arch/x86/kernel/smpboot.c 2011-02-14 10:11:10.920252001 +1100
-@@ -497,7 +497,7 @@
- "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
- num_online_cpus(),
- bogosum/(500000/HZ),
-- (bogosum/(5000/HZ))%100);
-+ (bogosum * 10/(50000/HZ))%100);
-
- pr_debug("Before bogocount - setting activated=1.\n");
- }
-Index: linux-2.6.37-ck2/include/linux/nfsd/stats.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/linux/nfsd/stats.h 2009-06-10 13:05:27.000000000 +1000
-+++ linux-2.6.37-ck2/include/linux/nfsd/stats.h 2011-02-14 10:11:10.920252001 +1100
-@@ -11,8 +11,8 @@
-
- #include <linux/nfs4.h>
-
--/* thread usage wraps very million seconds (approx one fortnight) */
--#define NFSD_USAGE_WRAP (HZ*1000000)
-+/* thread usage wraps every one hundred thousand seconds (approx one day) */
-+#define NFSD_USAGE_WRAP (HZ*100000)
-
- #ifdef __KERNEL__
-
-Index: linux-2.6.37-ck2/include/net/inet_timewait_sock.h
-===================================================================
---- linux-2.6.37-ck2.orig/include/net/inet_timewait_sock.h 2010-08-02 11:12:25.000000000 +1000
-+++ linux-2.6.37-ck2/include/net/inet_timewait_sock.h 2011-02-14 10:11:10.920252001 +1100
-@@ -39,8 +39,8 @@
- * If time > 4sec, it is "slow" path, no recycling is required,
- * so that we select tick to get range about 4 seconds.
- */
--#if HZ <= 16 || HZ > 4096
--# error Unsupported: HZ <= 16 or HZ > 4096
-+#if HZ <= 16 || HZ > 16384
-+# error Unsupported: HZ <= 16 or HZ > 16384
- #elif HZ <= 32
- # define INET_TWDR_RECYCLE_TICK (5 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
- #elif HZ <= 64
-@@ -55,8 +55,12 @@
- # define INET_TWDR_RECYCLE_TICK (10 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
- #elif HZ <= 2048
- # define INET_TWDR_RECYCLE_TICK (11 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
--#else
-+#elif HZ <= 4096
- # define INET_TWDR_RECYCLE_TICK (12 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
-+#elif HZ <= 8192
-+# define INET_TWDR_RECYCLE_TICK (13 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
-+#else
-+# define INET_TWDR_RECYCLE_TICK (14 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
- #endif
-
- /* TIME_WAIT reaping mechanism. */
-Index: linux-2.6.37-ck2/init/calibrate.c
-===================================================================
---- linux-2.6.37-ck2.orig/init/calibrate.c 2010-02-25 21:51:52.000000000 +1100
-+++ linux-2.6.37-ck2/init/calibrate.c 2011-02-14 10:11:10.921252001 +1100
-@@ -176,7 +176,7 @@
- if (!printed)
- pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
- loops_per_jiffy/(500000/HZ),
-- (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
-+ (loops_per_jiffy * 10 /(50000/HZ)) % 100, loops_per_jiffy);
-
- printed = true;
- }
-Index: linux-2.6.37-ck2/kernel/Kconfig.preempt
-===================================================================
---- linux-2.6.37-ck2.orig/kernel/Kconfig.preempt 2009-06-10 13:05:27.000000000 +1000
-+++ linux-2.6.37-ck2/kernel/Kconfig.preempt 2011-02-14 10:11:11.217252001 +1100
-@@ -1,7 +1,7 @@
-
- choice
- prompt "Preemption Model"
-- default PREEMPT_NONE
-+ default PREEMPT
-
- config PREEMPT_NONE
- bool "No Forced Preemption (Server)"
-@@ -17,7 +17,7 @@
- latencies.
-
- config PREEMPT_VOLUNTARY
-- bool "Voluntary Kernel Preemption (Desktop)"
-+ bool "Voluntary Kernel Preemption (Nothing)"
- help
- This option reduces the latency of the kernel by adding more
- "explicit preemption points" to the kernel code. These new
-@@ -31,7 +31,8 @@
- applications to run more 'smoothly' even when the system is
- under load.
-
-- Select this if you are building a kernel for a desktop system.
-+ Select this for no system in particular (choose Preemptible
-+ instead on a desktop if you know what's good for you).
-
- config PREEMPT
- bool "Preemptible Kernel (Low-Latency Desktop)"
-Index: linux-2.6.37-ck2/drivers/cpufreq/cpufreq_ondemand.c
-===================================================================
---- linux-2.6.37-ck2.orig/drivers/cpufreq/cpufreq_ondemand.c 2011-01-06 14:04:08.000000000 +1100
-+++ linux-2.6.37-ck2/drivers/cpufreq/cpufreq_ondemand.c 2011-02-14 10:11:11.438252001 +1100
-@@ -28,12 +28,12 @@
- * It helps to keep variable names smaller, simpler
- */
-
--#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
--#define DEF_FREQUENCY_UP_THRESHOLD (80)
-+#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (17)
-+#define DEF_FREQUENCY_UP_THRESHOLD (63)
- #define DEF_SAMPLING_DOWN_FACTOR (1)
- #define MAX_SAMPLING_DOWN_FACTOR (100000)
- #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
--#define MICRO_FREQUENCY_UP_THRESHOLD (95)
-+#define MICRO_FREQUENCY_UP_THRESHOLD (80)
- #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
- #define MIN_FREQUENCY_UP_THRESHOLD (11)
- #define MAX_FREQUENCY_UP_THRESHOLD (100)
-@@ -513,10 +513,10 @@
-
- /*
- * Every sampling_rate, we check, if current idle time is less
-- * than 20% (default), then we try to increase frequency
-+ * than 37% (default), then we try to increase frequency
- * Every sampling_rate, we look for a the lowest
- * frequency which can sustain the load while keeping idle time over
-- * 30%. If such a frequency exist, we try to decrease to this frequency.
-+ * 50%. If such a frequency exist, we try to decrease to this frequency.
- *
- * Any frequency increase takes it to the maximum frequency.
- * Frequency reduction happens at minimum steps of
-Index: linux-2.6.37-ck2/Makefile
-===================================================================
---- linux-2.6.37-ck2.orig/Makefile 2011-01-06 14:04:07.000000000 +1100
-+++ linux-2.6.37-ck2/Makefile 2011-02-14 10:11:20.469252000 +1100
-@@ -10,6 +10,10 @@
- # Comments in this file are targeted only to the developer, do not
- # expect to learn how to build the kernel reading this file.
-
-+CKVERSION = -ck2
-+CKNAME = BFS Powered
-+EXTRAVERSION := $(EXTRAVERSION)$(CKVERSION)
-+
- # Do not:
- # o use make's built-in rules and variables
- # (this increases performance and avoids hard-to-debug behaviour);