From 4491d00579e40fd2849aba1396e57547ef2b0e8f Mon Sep 17 00:00:00 2001
From: Cecil <knoppmyth@gmail.com>
Date: Sat, 9 Jul 2011 03:02:56 -0700
Subject: kernel26:Latest stable 2.6.37 and ck2. Removed sky2 NIC module in
 favor of sk98lin.

---
 .../kernel26/2.6.37.1-fix-no-more-unsigned.patch   |   20 +
 abs/core/kernel26/PKGBUILD                         |   26 +-
 abs/core/kernel26/config                           |   77 +-
 abs/core/kernel26/tmp/patch-2.6.37-ck2             | 9083 ++++++++++++++++++++
 4 files changed, 9140 insertions(+), 66 deletions(-)
 create mode 100644 abs/core/kernel26/2.6.37.1-fix-no-more-unsigned.patch
 create mode 100644 abs/core/kernel26/tmp/patch-2.6.37-ck2

diff --git a/abs/core/kernel26/2.6.37.1-fix-no-more-unsigned.patch b/abs/core/kernel26/2.6.37.1-fix-no-more-unsigned.patch
new file mode 100644
index 0000000..f132379
--- /dev/null
+++ b/abs/core/kernel26/2.6.37.1-fix-no-more-unsigned.patch
@@ -0,0 +1,20 @@
+--- linux-2.6.37.orig/kernel/sched_bfs.c	2011-02-18 23:09:39.000000000 +0200
++++ linux-2.6.37/kernel/sched_bfs.c	2011-02-18 23:13:17.368000023 +0200
+@@ -3352,7 +3352,7 @@
+  * This waits for either a completion of a specific task to be signaled or for a
+  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
+  */
+-unsigned long __sched
++long __sched
+ wait_for_completion_interruptible_timeout(struct completion *x,
+ 					  unsigned long timeout)
+ {
+@@ -3385,7 +3385,7 @@
+  * signaled or for a specified timeout to expire. It can be
+  * interrupted by a kill signal. The timeout is in jiffies.
+  */
+-unsigned long __sched
++long __sched
+ wait_for_completion_killable_timeout(struct completion *x,
+ 				     unsigned long timeout)
+ {
diff --git a/abs/core/kernel26/PKGBUILD b/abs/core/kernel26/PKGBUILD
index 750ed17..f5cdf77 100644
--- a/abs/core/kernel26/PKGBUILD
+++ b/abs/core/kernel26/PKGBUILD
@@ -7,26 +7,28 @@ pkgname=('kernel26' 'kernel26-headers' 'kernel26-docs') # Build stock -ARCH kern
 _kernelname=${pkgname#kernel26}
 _basekernel=2.6.37
 pkgver=${_basekernel}
-pkgrel=6
-_archver=4
+pkgrel=9
+_archver=6
 depends=('fbsplash')
 makedepends=('xmlto' 'docbook-xsl')
-_patchname="patch-${pkgver}-${_archver}-ARCH"
+_patchname="patch-${pkgver}.${_archver}-1-ARCH"
 #_patchname="patch-${pkgver}-1-ARCH"
 _fbpatchname="4200_fbcondecor-0.9.6.patch"
-_ckpatchname="patch-2.6.37-ck1"
+_ckpatchname="patch-2.6.37-ck2"
 _lhpatchname="lh.patch"
 arch=(i686 x86_64)
 license=('GPL2')
 url="http://www.kernel.org"
 source=(ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-$_basekernel.tar.bz2
         ftp://ftp.archlinux.org/other/kernel26/${_patchname}.bz2
-	http://kernel.org/pub/linux/kernel/people/ck/patches/2.6/2.6.37/2.6.37-ck1/patch-2.6.37-ck1.bz2
+#	http://kernel.org/pub/linux/kernel/people/ck/patches/2.6/2.6.37/2.6.37-ck1/patch-2.6.37-ck1.bz2
+	http://ompldr.org/vN2d6cg/patch-2.6.37-ck2.bz2
+	ftp://ftp.knoppmyth.net/R6/sources/sk98lin_v10.88.3.3_K2.6.37.patch
 	4200_fbcondecor-0.9.6.patch
         # the main kernel config files
         config config.x86_64 lh.patch.bz2
         # standard config files for mkinitcpio ramdisk
-        kernel26.preset)
+	kernel26.preset 2.6.37.1-fix-no-more-unsigned.patch)
 build() {
   cd ${srcdir}/linux-$_basekernel
   # Add -ARCH patches
@@ -35,6 +37,8 @@ build() {
   patch -Np1 -i ${srcdir}/${_fbpatchname}
   patch -Np1 -i ${srcdir}/${_ckpatchname}
   patch -Np1 -i ${srcdir}/${_lhpatchname}
+  patch -Np1 -i ${srcdir}/2.6.37.1-fix-no-more-unsigned.patch
+  patch -Np1 -i ${srcdir}/sk98lin_v10.88.3.3_K2.6.37.patch
 
   if [ "$CARCH" = "x86_64" ]; then
     cat ../config.x86_64 >./.config
@@ -245,10 +249,12 @@ find $pkgdir -type d -exec chmod 755 {} \;
 rm -f $pkgdir/usr/src/linux-$_kernver/Documentation/DocBook/Makefile
 }
 md5sums=('c8ee37b4fdccdb651e0603d35350b434'
-         '732176aeb134678b4e369e1d5d5fca2e'
-         'd5c93c7df1692d364c15d8eea0b384c9'
+         '2a7c0e9a9cd6bea46aa9b62f246439e2'
+         '4961070c8deebee3506df40083e84d3a'
+         'ae26934abb7168d0f928fb91eca12d92'
          'db9a807e03b7e8cfbc389089b006c7a7'
-         '5b284b5a93f285abfb71efa5d6a00eb2'
+         '7a9f8e179aa3b58a31976ffb05970165'
          '58990501d493d3e516a9ff58b3e0e0e7'
          'c5793a80c59be4f0b54bc3b2a49e14c7'
-         '25584700a0a679542929c4bed31433b6')
+         '25584700a0a679542929c4bed31433b6'
+         'c99a13ccbba56e3516ca8907c211a27b')
diff --git a/abs/core/kernel26/config b/abs/core/kernel26/config
index 1b42cf9..08a2278 100644
--- a/abs/core/kernel26/config
+++ b/abs/core/kernel26/config
@@ -1,7 +1,7 @@
 #
 # Automatically generated make config: don't edit
 # Linux/i386 2.6.37 Kernel Configuration
-# Wed Jan 12 03:08:44 2011
+# Fri Jul  8 05:17:19 2011
 #
 # CONFIG_64BIT is not set
 CONFIG_X86_32=y
@@ -111,8 +111,9 @@ CONFIG_GENERIC_PENDING_IRQ=y
 #
 # RCU Subsystem
 #
-CONFIG_TREE_PREEMPT_RCU=y
-CONFIG_PREEMPT_RCU=y
+CONFIG_TREE_RCU=y
+# CONFIG_TREE_PREEMPT_RCU is not set
+# CONFIG_PREEMPT_RCU is not set
 # CONFIG_RCU_TRACE is not set
 CONFIG_RCU_FANOUT=32
 # CONFIG_RCU_FANOUT_EXACT is not set
@@ -248,27 +249,27 @@ CONFIG_PADATA=y
 # CONFIG_INLINE_SPIN_LOCK_BH is not set
 # CONFIG_INLINE_SPIN_LOCK_IRQ is not set
 # CONFIG_INLINE_SPIN_LOCK_IRQSAVE is not set
-# CONFIG_INLINE_SPIN_UNLOCK is not set
+CONFIG_INLINE_SPIN_UNLOCK=y
 # CONFIG_INLINE_SPIN_UNLOCK_BH is not set
-# CONFIG_INLINE_SPIN_UNLOCK_IRQ is not set
+CONFIG_INLINE_SPIN_UNLOCK_IRQ=y
 # CONFIG_INLINE_SPIN_UNLOCK_IRQRESTORE is not set
 # CONFIG_INLINE_READ_TRYLOCK is not set
 # CONFIG_INLINE_READ_LOCK is not set
 # CONFIG_INLINE_READ_LOCK_BH is not set
 # CONFIG_INLINE_READ_LOCK_IRQ is not set
 # CONFIG_INLINE_READ_LOCK_IRQSAVE is not set
-# CONFIG_INLINE_READ_UNLOCK is not set
+CONFIG_INLINE_READ_UNLOCK=y
 # CONFIG_INLINE_READ_UNLOCK_BH is not set
-# CONFIG_INLINE_READ_UNLOCK_IRQ is not set
+CONFIG_INLINE_READ_UNLOCK_IRQ=y
 # CONFIG_INLINE_READ_UNLOCK_IRQRESTORE is not set
 # CONFIG_INLINE_WRITE_TRYLOCK is not set
 # CONFIG_INLINE_WRITE_LOCK is not set
 # CONFIG_INLINE_WRITE_LOCK_BH is not set
 # CONFIG_INLINE_WRITE_LOCK_IRQ is not set
 # CONFIG_INLINE_WRITE_LOCK_IRQSAVE is not set
-# CONFIG_INLINE_WRITE_UNLOCK is not set
+CONFIG_INLINE_WRITE_UNLOCK=y
 # CONFIG_INLINE_WRITE_UNLOCK_BH is not set
-# CONFIG_INLINE_WRITE_UNLOCK_IRQ is not set
+CONFIG_INLINE_WRITE_UNLOCK_IRQ=y
 # CONFIG_INLINE_WRITE_UNLOCK_IRQRESTORE is not set
 # CONFIG_MUTEX_SPIN_ON_OWNER is not set
 CONFIG_FREEZER=y
@@ -277,7 +278,7 @@ CONFIG_FREEZER=y
 # Processor type and features
 #
 CONFIG_TICK_ONESHOT=y
-CONFIG_NO_HZ=y
+# CONFIG_NO_HZ is not set
 CONFIG_HIGH_RES_TIMERS=y
 CONFIG_GENERIC_CLOCKEVENTS_BUILD=y
 CONFIG_SMP=y
@@ -354,9 +355,9 @@ CONFIG_NR_CPUS=8
 CONFIG_SCHED_SMT=y
 CONFIG_SCHED_MC=y
 # CONFIG_IRQ_TIME_ACCOUNTING is not set
-# CONFIG_PREEMPT_NONE is not set
+CONFIG_PREEMPT_NONE=y
 # CONFIG_PREEMPT_VOLUNTARY is not set
-CONFIG_PREEMPT=y
+# CONFIG_PREEMPT is not set
 CONFIG_X86_LOCAL_APIC=y
 CONFIG_X86_IO_APIC=y
 CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS=y
@@ -427,10 +428,10 @@ CONFIG_ARCH_USES_PG_UNCACHED=y
 CONFIG_EFI=y
 CONFIG_SECCOMP=y
 CONFIG_CC_STACKPROTECTOR=y
-# CONFIG_HZ_100 is not set
+CONFIG_HZ_100=y
 # CONFIG_HZ_250_NODEFAULT is not set
 # CONFIG_HZ_300 is not set
-CONFIG_HZ_1000=y
+# CONFIG_HZ_1000 is not set
 # CONFIG_HZ_1500 is not set
 # CONFIG_HZ_2000 is not set
 # CONFIG_HZ_3000 is not set
@@ -438,7 +439,7 @@ CONFIG_HZ_1000=y
 # CONFIG_HZ_5000 is not set
 # CONFIG_HZ_7500 is not set
 # CONFIG_HZ_10000 is not set
-CONFIG_HZ=1000
+CONFIG_HZ=100
 CONFIG_SCHED_HRTICK=y
 CONFIG_KEXEC=y
 # CONFIG_CRASH_DUMP is not set
@@ -512,48 +513,13 @@ CONFIG_APM_DO_ENABLE=y
 #
 # CPU Frequency scaling
 #
-CONFIG_CPU_FREQ=y
-CONFIG_CPU_FREQ_TABLE=m
-# CONFIG_CPU_FREQ_DEBUG is not set
-CONFIG_CPU_FREQ_STAT=m
-CONFIG_CPU_FREQ_STAT_DETAILS=y
-CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE=y
+# CONFIG_CPU_FREQ is not set
+# CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE is not set
 # CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE is not set
 # CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND is not set
 # CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE is not set
-CONFIG_CPU_FREQ_GOV_PERFORMANCE=y
-CONFIG_CPU_FREQ_GOV_POWERSAVE=m
-CONFIG_CPU_FREQ_GOV_USERSPACE=m
-CONFIG_CPU_FREQ_GOV_ONDEMAND=m
-CONFIG_CPU_FREQ_GOV_CONSERVATIVE=m
-
-#
-# CPUFreq processor drivers
-#
-CONFIG_X86_PCC_CPUFREQ=m
-CONFIG_X86_ACPI_CPUFREQ=m
-CONFIG_X86_POWERNOW_K6=m
-CONFIG_X86_POWERNOW_K7=m
-CONFIG_X86_POWERNOW_K7_ACPI=y
-CONFIG_X86_POWERNOW_K8=m
-CONFIG_X86_GX_SUSPMOD=m
-# CONFIG_X86_SPEEDSTEP_CENTRINO is not set
-CONFIG_X86_SPEEDSTEP_ICH=m
-CONFIG_X86_SPEEDSTEP_SMI=m
-CONFIG_X86_P4_CLOCKMOD=m
-CONFIG_X86_CPUFREQ_NFORCE2=m
-CONFIG_X86_LONGRUN=m
-CONFIG_X86_LONGHAUL=m
-CONFIG_X86_E_POWERSAVER=m
-
-#
-# shared options
-#
-CONFIG_X86_SPEEDSTEP_LIB=m
-CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK=y
 CONFIG_CPU_IDLE=y
 CONFIG_CPU_IDLE_GOV_LADDER=y
-CONFIG_CPU_IDLE_GOV_MENU=y
 CONFIG_INTEL_IDLE=y
 
 #
@@ -1954,10 +1920,11 @@ CONFIG_YELLOWFIN=m
 CONFIG_R8169=m
 # CONFIG_R8169_VLAN is not set
 CONFIG_SIS190=m
+CONFIG_SK98LIN=m
+# CONFIG_SK98LIN_NAPI is not set
 CONFIG_SKGE=m
 # CONFIG_SKGE_DEBUG is not set
-CONFIG_SKY2=m
-# CONFIG_SKY2_DEBUG is not set
+# CONFIG_SKY2 is not set
 CONFIG_VIA_VELOCITY=m
 CONFIG_TIGON3=m
 CONFIG_BNX2=m
@@ -5166,7 +5133,6 @@ CONFIG_TIMER_STATS=y
 # CONFIG_SLUB_DEBUG_ON is not set
 # CONFIG_SLUB_STATS is not set
 # CONFIG_DEBUG_KMEMLEAK is not set
-# CONFIG_DEBUG_PREEMPT is not set
 # CONFIG_DEBUG_RT_MUTEXES is not set
 # CONFIG_RT_MUTEX_TESTER is not set
 # CONFIG_DEBUG_SPINLOCK is not set
@@ -5225,7 +5191,6 @@ CONFIG_TRACING_SUPPORT=y
 CONFIG_FTRACE=y
 # CONFIG_FUNCTION_TRACER is not set
 # CONFIG_IRQSOFF_TRACER is not set
-# CONFIG_PREEMPT_TRACER is not set
 # CONFIG_SCHED_TRACER is not set
 # CONFIG_FTRACE_SYSCALLS is not set
 CONFIG_BRANCH_PROFILE_NONE=y
diff --git a/abs/core/kernel26/tmp/patch-2.6.37-ck2 b/abs/core/kernel26/tmp/patch-2.6.37-ck2
new file mode 100644
index 0000000..c4657e7
--- /dev/null
+++ b/abs/core/kernel26/tmp/patch-2.6.37-ck2
@@ -0,0 +1,9083 @@
+Index: linux-2.6.37-ck2/arch/powerpc/platforms/cell/spufs/sched.c
+===================================================================
+--- linux-2.6.37-ck2.orig/arch/powerpc/platforms/cell/spufs/sched.c	2010-05-17 18:51:19.000000000 +1000
++++ linux-2.6.37-ck2/arch/powerpc/platforms/cell/spufs/sched.c	2011-02-14 09:47:50.982252001 +1100
+@@ -64,11 +64,6 @@
+ static struct timer_list spuloadavg_timer;
+ 
+ /*
+- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
+- */
+-#define NORMAL_PRIO		120
+-
+-/*
+  * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
+  * tick for every 10 CPU scheduler ticks.
+  */
+Index: linux-2.6.37-ck2/Documentation/scheduler/sched-BFS.txt
+===================================================================
+--- /dev/null	1970-01-01 00:00:00.000000000 +0000
++++ linux-2.6.37-ck2/Documentation/scheduler/sched-BFS.txt	2011-02-14 09:47:50.984252001 +1100
+@@ -0,0 +1,351 @@
++BFS - The Brain Fuck Scheduler by Con Kolivas.
++
++Goals.
++
++The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to
++completely do away with the complex designs of the past for the cpu process
++scheduler and instead implement one that is very simple in basic design.
++The main focus of BFS is to achieve excellent desktop interactivity and
++responsiveness without heuristics and tuning knobs that are difficult to
++understand, impossible to model and predict the effect of, and when tuned to
++one workload cause massive detriment to another.
++
++
++Design summary.
++
++BFS is best described as a single runqueue, O(n) lookup, earliest effective
++virtual deadline first design, loosely based on EEVDF (earliest eligible virtual
++deadline first) and my previous Staircase Deadline scheduler. Each component
++shall be described in order to understand the significance of, and reasoning for
++it. The codebase when the first stable version was released was approximately
++9000 lines less code than the existing mainline linux kernel scheduler (in
++2.6.31). This does not even take into account the removal of documentation and
++the cgroups code that is not used.
++
++Design reasoning.
++
++The single runqueue refers to the queued but not running processes for the
++entire system, regardless of the number of CPUs. The reason for going back to
++a single runqueue design is that once multiple runqueues are introduced,
++per-CPU or otherwise, there will be complex interactions as each runqueue will
++be responsible for the scheduling latency and fairness of the tasks only on its
++own runqueue, and to achieve fairness and low latency across multiple CPUs, any
++advantage in throughput of having CPU local tasks causes other disadvantages.
++This is due to requiring a very complex balancing system to at best achieve some
++semblance of fairness across CPUs and can only maintain relatively low latency
++for tasks bound to the same CPUs, not across them. To increase said fairness
++and latency across CPUs, the advantage of local runqueue locking, which makes
++for better scalability, is lost due to having to grab multiple locks.
++
++A significant feature of BFS is that all accounting is done purely based on CPU
++used and nowhere is sleep time used in any way to determine entitlement or
++interactivity. Interactivity "estimators" that use some kind of sleep/run
++algorithm are doomed to fail to detect all interactive tasks, and to falsely tag
++tasks that aren't interactive as being so. The reason for this is that it is
++close to impossible to determine that when a task is sleeping, whether it is
++doing it voluntarily, as in a userspace application waiting for input in the
++form of a mouse click or otherwise, or involuntarily, because it is waiting for
++another thread, process, I/O, kernel activity or whatever. Thus, such an
++estimator will introduce corner cases, and more heuristics will be required to
++cope with those corner cases, introducing more corner cases and failed
++interactivity detection and so on. Interactivity in BFS is built into the design
++by virtue of the fact that tasks that are waking up have not used up their quota
++of CPU time, and have earlier effective deadlines, thereby making it very likely
++they will preempt any CPU bound task of equivalent nice level. See below for
++more information on the virtual deadline mechanism. Even if they do not preempt
++a running task, because the rr interval is guaranteed to have a bound upper
++limit on how long a task will wait for, it will be scheduled within a timeframe
++that will not cause visible interface jitter.
++
++
++Design details.
++
++Task insertion.
++
++BFS inserts tasks into each relevant queue as an O(1) insertion into a double
++linked list. On insertion, *every* running queue is checked to see if the newly
++queued task can run on any idle queue, or preempt the lowest running task on the
++system. This is how the cross-CPU scheduling of BFS achieves significantly lower
++latency per extra CPU the system has. In this case the lookup is, in the worst
++case scenario, O(n) where n is the number of CPUs on the system.
++
++Data protection.
++
++BFS has one single lock protecting the process local data of every task in the
++global queue. Thus every insertion, removal and modification of task data in the
++global runqueue needs to grab the global lock. However, once a task is taken by
++a CPU, the CPU has its own local data copy of the running process' accounting
++information which only that CPU accesses and modifies (such as during a
++timer tick) thus allowing the accounting data to be updated lockless. Once a
++CPU has taken a task to run, it removes it from the global queue. Thus the
++global queue only ever has, at most,
++
++	(number of tasks requesting cpu time) - (number of logical CPUs) + 1
++
++tasks in the global queue. This value is relevant for the time taken to look up
++tasks during scheduling. This will increase if many tasks with CPU affinity set
++in their policy to limit which CPUs they're allowed to run on if they outnumber
++the number of CPUs. The +1 is because when rescheduling a task, the CPU's
++currently running task is put back on the queue. Lookup will be described after
++the virtual deadline mechanism is explained.
++
++Virtual deadline.
++
++The key to achieving low latency, scheduling fairness, and "nice level"
++distribution in BFS is entirely in the virtual deadline mechanism. The one
++tunable in BFS is the rr_interval, or "round robin interval". This is the
++maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
++tasks of the same nice level will be running for, or looking at it the other
++way around, the longest duration two tasks of the same nice level will be
++delayed for. When a task requests cpu time, it is given a quota (time_slice)
++equal to the rr_interval and a virtual deadline. The virtual deadline is
++offset from the current time in jiffies by this equation:
++
++	jiffies + (prio_ratio * rr_interval)
++
++The prio_ratio is determined as a ratio compared to the baseline of nice -20
++and increases by 10% per nice level. The deadline is a virtual one only in that
++no guarantee is placed that a task will actually be scheduled by this time, but
++it is used to compare which task should go next. There are three components to
++how a task is next chosen. First is time_slice expiration. If a task runs out
++of its time_slice, it is descheduled, the time_slice is refilled, and the
++deadline reset to that formula above. Second is sleep, where a task no longer
++is requesting CPU for whatever reason. The time_slice and deadline are _not_
++adjusted in this case and are just carried over for when the task is next
++scheduled. Third is preemption, and that is when a newly waking task is deemed
++higher priority than a currently running task on any cpu by virtue of the fact
++that it has an earlier virtual deadline than the currently running task. The
++earlier deadline is the key to which task is next chosen for the first and
++second cases. Once a task is descheduled, it is put back on the queue, and an
++O(n) lookup of all queued-but-not-running tasks is done to determine which has
++the earliest deadline and that task is chosen to receive CPU next.
++
++The CPU proportion of different nice tasks works out to be approximately the
++
++	(prio_ratio difference)^2
++
++The reason it is squared is that a task's deadline does not change while it is
++running unless it runs out of time_slice. Thus, even if the time actually
++passes the deadline of another task that is queued, it will not get CPU time
++unless the current running task deschedules, and the time "base" (jiffies) is
++constantly moving.
++
++Task lookup.
++
++BFS has 103 priority queues. 100 of these are dedicated to the static priority
++of realtime tasks, and the remaining 3 are, in order of best to worst priority,
++SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority
++scheduling). When a task of these priorities is queued, a bitmap of running
++priorities is set showing which of these priorities has tasks waiting for CPU
++time. When a CPU is made to reschedule, the lookup for the next task to get
++CPU time is performed in the following way:
++
++First the bitmap is checked to see what static priority tasks are queued. If
++any realtime priorities are found, the corresponding queue is checked and the
++first task listed there is taken (provided CPU affinity is suitable) and lookup
++is complete. If the priority corresponds to a SCHED_ISO task, they are also
++taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds
++to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this
++stage, every task in the runlist that corresponds to that priority is checked
++to see which has the earliest set deadline, and (provided it has suitable CPU
++affinity) it is taken off the runqueue and given the CPU. If a task has an
++expired deadline, it is taken and the rest of the lookup aborted (as they are
++chosen in FIFO order).
++
++Thus, the lookup is O(n) in the worst case only, where n is as described
++earlier, as tasks may be chosen before the whole task list is looked over.
++
++
++Scalability.
++
++The major limitations of BFS will be that of scalability, as the separate
++runqueue designs will have less lock contention as the number of CPUs rises.
++However they do not scale linearly even with separate runqueues as multiple
++runqueues will need to be locked concurrently on such designs to be able to
++achieve fair CPU balancing, to try and achieve some sort of nice-level fairness
++across CPUs, and to achieve low enough latency for tasks on a busy CPU when
++other CPUs would be more suited. BFS has the advantage that it requires no
++balancing algorithm whatsoever, as balancing occurs by proxy simply because
++all CPUs draw off the global runqueue, in priority and deadline order. Despite
++the fact that scalability is _not_ the prime concern of BFS, it both shows very
++good scalability to smaller numbers of CPUs and is likely a more scalable design
++at these numbers of CPUs.
++
++It also has some very low overhead scalability features built into the design
++when it has been deemed their overhead is so marginal that they're worth adding.
++The first is the local copy of the running process' data to the CPU it's running
++on to allow that data to be updated lockless where possible. Then there is
++deference paid to the last CPU a task was running on, by trying that CPU first
++when looking for an idle CPU to use the next time it's scheduled. Finally there
++is the notion of cache locality beyond the last running CPU. The sched_domains
++information is used to determine the relative virtual "cache distance" that
++other CPUs have from the last CPU a task was running on. CPUs with shared
++caches, such as SMT siblings, or multicore CPUs with shared caches, are treated
++as cache local. CPUs without shared caches are treated as not cache local, and
++CPUs on different NUMA nodes are treated as very distant. This "relative cache
++distance" is used by modifying the virtual deadline value when doing lookups.
++Effectively, the deadline is unaltered between "cache local" CPUs, doubled for
++"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning
++behind the doubling of deadlines is as follows. The real cost of migrating a
++task from one CPU to another is entirely dependant on the cache footprint of
++the task, how cache intensive the task is, how long it's been running on that
++CPU to take up the bulk of its cache, how big the CPU cache is, how fast and
++how layered the CPU cache is, how fast a context switch is... and so on. In
++other words, it's close to random in the real world where we do more than just
++one sole workload. The only thing we can be sure of is that it's not free. So
++BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs
++is more important than cache locality, and cache locality only plays a part
++after that. Doubling the effective deadline is based on the premise that the
++"cache local" CPUs will tend to work on the same tasks up to double the number
++of cache local CPUs, and once the workload is beyond that amount, it is likely
++that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA
++is a value I pulled out of my arse.
++
++When choosing an idle CPU for a waking task, the cache locality is determined
++according to where the task last ran and then idle CPUs are ranked from best
++to worst to choose the most suitable idle CPU based on cache locality, NUMA
++node locality and hyperthread sibling business. They are chosen in the
++following preference (if idle):
++
++* Same core, idle or busy cache, idle threads
++* Other core, same cache, idle or busy cache, idle threads.
++* Same node, other CPU, idle cache, idle threads.
++* Same node, other CPU, busy cache, idle threads.
++* Same core, busy threads.
++* Other core, same cache, busy threads.
++* Same node, other CPU, busy threads.
++* Other node, other CPU, idle cache, idle threads.
++* Other node, other CPU, busy cache, idle threads.
++* Other node, other CPU, busy threads.
++
++This shows the SMT or "hyperthread" awareness in the design as well which will
++choose a real idle core first before a logical SMT sibling which already has
++tasks on the physical CPU.
++
++Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark.
++However this benchmarking was performed on an earlier design that was far less
++scalable than the current one so it's hard to know how scalable it is in terms
++of both CPUs (due to the global runqueue) and heavily loaded machines (due to
++O(n) lookup) at this stage. Note that in terms of scalability, the number of
++_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x)
++quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark
++results are very promising indeed, without needing to tweak any knobs, features
++or options. Benchmark contributions are most welcome.
++
++
++Features
++
++As the initial prime target audience for BFS was the average desktop user, it
++was designed to not need tweaking, tuning or have features set to obtain benefit
++from it. Thus the number of knobs and features has been kept to an absolute
++minimum and should not require extra user input for the vast majority of cases.
++There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval
++and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition
++to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is
++support for CGROUPS. The average user should neither need to know what these
++are, nor should they need to be using them to have good desktop behaviour.
++
++rr_interval
++
++There is only one "scheduler" tunable, the round robin interval. This can be
++accessed in
++
++	/proc/sys/kernel/rr_interval
++
++The value is in milliseconds, and the default value is set to 6 on a
++uniprocessor machine, and automatically set to a progressively higher value on
++multiprocessor machines. The reasoning behind increasing the value on more CPUs
++is that the effective latency is decreased by virtue of there being more CPUs on
++BFS (for reasons explained above), and increasing the value allows for less
++cache contention and more throughput. Valid values are from 1 to 1000
++Decreasing the value will decrease latencies at the cost of decreasing
++throughput, while increasing it will improve throughput, but at the cost of
++worsening latencies. The accuracy of the rr interval is limited by HZ resolution
++of the kernel configuration. Thus, the worst case latencies are usually slightly
++higher than this actual value. The default value of 6 is not an arbitrary one.
++It is based on the fact that humans can detect jitter at approximately 7ms, so
++aiming for much lower latencies is pointless under most circumstances. It is
++worth noting this fact when comparing the latency performance of BFS to other
++schedulers. Worst case latencies being higher than 7ms are far worse than
++average latencies not being in the microsecond range.
++
++Isochronous scheduling.
++
++Isochronous scheduling is a unique scheduling policy designed to provide
++near-real-time performance to unprivileged (ie non-root) users without the
++ability to starve the machine indefinitely. Isochronous tasks (which means
++"same time") are set using, for example, the schedtool application like so:
++
++	schedtool -I -e amarok
++
++This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
++is that it has a priority level between true realtime tasks and SCHED_NORMAL
++which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
++if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
++rate). However if ISO tasks run for more than a tunable finite amount of time,
++they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
++time is the percentage of _total CPU_ available across the machine, configurable
++as a percentage in the following "resource handling" tunable (as opposed to a
++scheduler tunable):
++
++	/proc/sys/kernel/iso_cpu
++
++and is set to 70% by default. It is calculated over a rolling 5 second average
++Because it is the total CPU available, it means that on a multi CPU machine, it
++is possible to have an ISO task running as realtime scheduling indefinitely on
++just one CPU, as the other CPUs will be available. Setting this to 100 is the
++equivalent of giving all users SCHED_RR access and setting it to 0 removes the
++ability to run any pseudo-realtime tasks.
++
++A feature of BFS is that it detects when an application tries to obtain a
++realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
++appropriate privileges to use those policies. When it detects this, it will
++give the task SCHED_ISO policy instead. Thus it is transparent to the user.
++Because some applications constantly set their policy as well as their nice
++level, there is potential for them to undo the override specified by the user
++on the command line of setting the policy to SCHED_ISO. To counter this, once
++a task has been set to SCHED_ISO policy, it needs superuser privileges to set
++it back to SCHED_NORMAL. This will ensure the task remains ISO and all child
++processes and threads will also inherit the ISO policy.
++
++Idleprio scheduling.
++
++Idleprio scheduling is a scheduling policy designed to give out CPU to a task
++_only_ when the CPU would be otherwise idle. The idea behind this is to allow
++ultra low priority tasks to be run in the background that have virtually no
++effect on the foreground tasks. This is ideally suited to distributed computing
++clients (like setiathome, folding, mprime etc) but can also be used to start
++a video encode or so on without any slowdown of other tasks. To avoid this
++policy from grabbing shared resources and holding them indefinitely, if it
++detects a state where the task is waiting on I/O, the machine is about to
++suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As
++per the Isochronous task management, once a task has been scheduled as IDLEPRIO,
++it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can
++be set to start as SCHED_IDLEPRIO with the schedtool command like so:
++
++	schedtool -D -e ./mprime
++
++Subtick accounting.
++
++It is surprisingly difficult to get accurate CPU accounting, and in many cases,
++the accounting is done by simply determining what is happening at the precise
++moment a timer tick fires off. This becomes increasingly inaccurate as the
++timer tick frequency (HZ) is lowered. It is possible to create an application
++which uses almost 100% CPU, yet by being descheduled at the right time, records
++zero CPU usage. While the main problem with this is that there are possible
++security implications, it is also difficult to determine how much CPU a task
++really does use. BFS tries to use the sub-tick accounting from the TSC clock,
++where possible, to determine real CPU usage. This is not entirely reliable, but
++is far more likely to produce accurate CPU usage data than the existing designs
++and will not show tasks as consuming no CPU usage when they actually are. Thus,
++the amount of CPU reported as being used by BFS will more accurately represent
++how much CPU the task itself is using (as is shown for example by the 'time'
++application), so the reported values may be quite different to other schedulers.
++Values reported as the 'load' are more prone to problems with this design, but
++per process values are closer to real usage. When comparing throughput of BFS
++to other designs, it is important to compare the actual completed work in terms
++of total wall clock time taken and total work done, rather than the reported
++"cpu usage".
++
++
++Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010
+Index: linux-2.6.37-ck2/Documentation/sysctl/kernel.txt
+===================================================================
+--- linux-2.6.37-ck2.orig/Documentation/sysctl/kernel.txt	2011-01-06 14:04:07.000000000 +1100
++++ linux-2.6.37-ck2/Documentation/sysctl/kernel.txt	2011-02-14 09:47:50.984252001 +1100
+@@ -32,6 +32,7 @@
+ - domainname
+ - hostname
+ - hotplug
++- iso_cpu
+ - java-appletviewer           [ binfmt_java, obsolete ]
+ - java-interpreter            [ binfmt_java, obsolete ]
+ - kstack_depth_to_print       [ X86 only ]
+@@ -54,6 +55,7 @@
+ - randomize_va_space
+ - real-root-dev               ==> Documentation/initrd.txt
+ - reboot-cmd                  [ SPARC only ]
++- rr_interval
+ - rtsig-max
+ - rtsig-nr
+ - sem
+@@ -254,6 +256,16 @@
+ 
+ ==============================================================
+ 
++iso_cpu: (BFS CPU scheduler only).
++
++This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
++run effectively at realtime priority, averaged over a rolling five
++seconds over the -whole- system, meaning all cpus.
++
++Set to 70 (percent) by default.
++
++==============================================================
++
+ l2cr: (PPC only)
+ 
+ This flag controls the L2 cache of G3 processor boards. If
+@@ -428,6 +440,20 @@
+ 
+ ==============================================================
+ 
++rr_interval: (BFS CPU scheduler only)
++
++This is the smallest duration that any cpu process scheduling unit
++will run for. Increasing this value can increase throughput of cpu
++bound tasks substantially but at the expense of increased latencies
++overall. Conversely decreasing it will decrease average and maximum
++latencies but at the expense of throughput. This value is in
++milliseconds and the default value chosen depends on the number of
++cpus available at scheduler initialisation with a minimum of 6.
++
++Valid values are from 1-1000.
++
++==============================================================
++
+ rtsig-max & rtsig-nr:
+ 
+ The file rtsig-max can be used to tune the maximum number
+Index: linux-2.6.37-ck2/fs/proc/base.c
+===================================================================
+--- linux-2.6.37-ck2.orig/fs/proc/base.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/fs/proc/base.c	2011-02-14 09:47:50.986252000 +1100
+@@ -356,7 +356,7 @@
+ static int proc_pid_schedstat(struct task_struct *task, char *buffer)
+ {
+ 	return sprintf(buffer, "%llu %llu %lu\n",
+-			(unsigned long long)task->se.sum_exec_runtime,
++			(unsigned long long)tsk_seruntime(task),
+ 			(unsigned long long)task->sched_info.run_delay,
+ 			task->sched_info.pcount);
+ }
+Index: linux-2.6.37-ck2/include/linux/init_task.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/init_task.h	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/include/linux/init_task.h	2011-02-14 09:47:50.986252001 +1100
+@@ -114,6 +114,67 @@
+  *  INIT_TASK is used to set up the first task table, touch at
+  * your own risk!. Base=0, limit=0x1fffff (=2MB)
+  */
++#ifdef CONFIG_SCHED_BFS
++#define INIT_TASK(tsk)	\
++{									\
++	.state		= 0,						\
++	.stack		= &init_thread_info,				\
++	.usage		= ATOMIC_INIT(2),				\
++	.flags		= PF_KTHREAD,					\
++	.lock_depth	= -1,						\
++	.prio		= NORMAL_PRIO,					\
++	.static_prio	= MAX_PRIO-20,					\
++	.normal_prio	= NORMAL_PRIO,					\
++	.deadline	= 0,						\
++	.policy		= SCHED_NORMAL,					\
++	.cpus_allowed	= CPU_MASK_ALL,					\
++	.mm		= NULL,						\
++	.active_mm	= &init_mm,					\
++	.run_list	= LIST_HEAD_INIT(tsk.run_list),			\
++	.time_slice	= HZ,					\
++	.tasks		= LIST_HEAD_INIT(tsk.tasks),			\
++	.pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \
++	.ptraced	= LIST_HEAD_INIT(tsk.ptraced),			\
++	.ptrace_entry	= LIST_HEAD_INIT(tsk.ptrace_entry),		\
++	.real_parent	= &tsk,						\
++	.parent		= &tsk,						\
++	.children	= LIST_HEAD_INIT(tsk.children),			\
++	.sibling	= LIST_HEAD_INIT(tsk.sibling),			\
++	.group_leader	= &tsk,						\
++	RCU_INIT_POINTER(.real_cred, &init_cred),			\
++	RCU_INIT_POINTER(.cred, &init_cred),				\
++	.comm		= "swapper",					\
++	.thread		= INIT_THREAD,					\
++	.fs		= &init_fs,					\
++	.files		= &init_files,					\
++	.signal		= &init_signals,				\
++	.sighand	= &init_sighand,				\
++	.nsproxy	= &init_nsproxy,				\
++	.pending	= {						\
++		.list = LIST_HEAD_INIT(tsk.pending.list),		\
++		.signal = {{0}}},					\
++	.blocked	= {{0}},					\
++	.alloc_lock	= __SPIN_LOCK_UNLOCKED(tsk.alloc_lock),		\
++	.journal_info	= NULL,						\
++	.cpu_timers	= INIT_CPU_TIMERS(tsk.cpu_timers),		\
++	.fs_excl	= ATOMIC_INIT(0),				\
++	.pi_lock	= __RAW_SPIN_LOCK_UNLOCKED(tsk.pi_lock),		\
++	.timer_slack_ns = 50000, /* 50 usec default slack */		\
++	.pids = {							\
++		[PIDTYPE_PID]  = INIT_PID_LINK(PIDTYPE_PID),		\
++		[PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID),		\
++		[PIDTYPE_SID]  = INIT_PID_LINK(PIDTYPE_SID),		\
++	},								\
++	.dirties = INIT_PROP_LOCAL_SINGLE(dirties),			\
++	INIT_IDS							\
++	INIT_PERF_EVENTS(tsk)						\
++	INIT_TRACE_IRQFLAGS						\
++	INIT_LOCKDEP							\
++	INIT_FTRACE_GRAPH						\
++	INIT_TRACE_RECURSION						\
++	INIT_TASK_RCU_PREEMPT(tsk)					\
++}
++#else /* CONFIG_SCHED_BFS */
+ #define INIT_TASK(tsk)	\
+ {									\
+ 	.state		= 0,						\
+@@ -179,7 +240,7 @@
+ 	INIT_TRACE_RECURSION						\
+ 	INIT_TASK_RCU_PREEMPT(tsk)					\
+ }
+-
++#endif /* CONFIG_SCHED_BFS */
+ 
+ #define INIT_CPU_TIMERS(cpu_timers)					\
+ {									\
+Index: linux-2.6.37-ck2/include/linux/ioprio.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/ioprio.h	2009-06-10 13:05:27.000000000 +1000
++++ linux-2.6.37-ck2/include/linux/ioprio.h	2011-02-14 09:47:50.986252001 +1100
+@@ -64,6 +64,8 @@
+ 
+ static inline int task_nice_ioprio(struct task_struct *task)
+ {
++	if (iso_task(task))
++		return 0;
+ 	return (task_nice(task) + 20) / 5;
+ }
+ 
+Index: linux-2.6.37-ck2/include/linux/sched.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/sched.h	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/include/linux/sched.h	2011-02-14 10:11:01.691252000 +1100
+@@ -36,8 +36,15 @@
+ #define SCHED_FIFO		1
+ #define SCHED_RR		2
+ #define SCHED_BATCH		3
+-/* SCHED_ISO: reserved but not implemented yet */
++/* SCHED_ISO: Implemented on BFS only */
+ #define SCHED_IDLE		5
++#define SCHED_IDLEPRIO		SCHED_IDLE
++#ifdef CONFIG_SCHED_BFS
++#define SCHED_ISO		4
++#define SCHED_MAX		(SCHED_IDLEPRIO)
++#define SCHED_RANGE(policy)	((policy) <= SCHED_MAX)
++#endif
++
+ /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
+ #define SCHED_RESET_ON_FORK     0x40000000
+ 
+@@ -268,8 +275,6 @@
+ extern void init_idle(struct task_struct *idle, int cpu);
+ extern void init_idle_bootup_task(struct task_struct *idle);
+ 
+-extern int runqueue_is_locked(int cpu);
+-
+ extern cpumask_var_t nohz_cpu_mask;
+ #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
+ extern void select_nohz_load_balancer(int stop_tick);
+@@ -1188,17 +1193,31 @@
+ 
+ 	int lock_depth;		/* BKL lock depth */
+ 
++#ifndef CONFIG_SCHED_BFS
+ #ifdef CONFIG_SMP
+ #ifdef __ARCH_WANT_UNLOCKED_CTXSW
+ 	int oncpu;
+ #endif
+ #endif
++#else /* CONFIG_SCHED_BFS */
++	int oncpu;
++#endif
+ 
+ 	int prio, static_prio, normal_prio;
+ 	unsigned int rt_priority;
++#ifdef CONFIG_SCHED_BFS
++	int time_slice;
++	u64 deadline;
++	struct list_head run_list;
++	u64 last_ran;
++	u64 sched_time; /* sched_clock time spent running */
++
++	unsigned long rt_timeout;
++#else /* CONFIG_SCHED_BFS */
+ 	const struct sched_class *sched_class;
+ 	struct sched_entity se;
+ 	struct sched_rt_entity rt;
++#endif
+ 
+ #ifdef CONFIG_PREEMPT_NOTIFIERS
+ 	/* list of struct preempt_notifier: */
+@@ -1295,6 +1314,9 @@
+ 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
+ 
+ 	cputime_t utime, stime, utimescaled, stimescaled;
++#ifdef CONFIG_SCHED_BFS
++	unsigned long utime_pc, stime_pc;
++#endif
+ 	cputime_t gtime;
+ #ifndef CONFIG_VIRT_CPU_ACCOUNTING
+ 	cputime_t prev_utime, prev_stime;
+@@ -1514,6 +1536,60 @@
+ #endif
+ };
+ 
++#ifdef CONFIG_SCHED_BFS
++extern int grunqueue_is_locked(void);
++extern void grq_unlock_wait(void);
++#define tsk_seruntime(t)		((t)->sched_time)
++#define tsk_rttimeout(t)		((t)->rt_timeout)
++
++static inline void tsk_cpus_current(struct task_struct *p)
++{
++}
++
++#define runqueue_is_locked(cpu)	grunqueue_is_locked()
++
++static inline void print_scheduler_version(void)
++{
++	printk(KERN_INFO"BFS CPU scheduler v0.363 by Con Kolivas.\n");
++}
++
++static inline int iso_task(struct task_struct *p)
++{
++	return (p->policy == SCHED_ISO);
++}
++extern void remove_cpu(unsigned long cpu);
++extern int above_background_load(void);
++#else /* CFS */
++extern int runqueue_is_locked(int cpu);
++#define tsk_seruntime(t)	((t)->se.sum_exec_runtime)
++#define tsk_rttimeout(t)	((t)->rt.timeout)
++
++static inline void tsk_cpus_current(struct task_struct *p)
++{
++	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
++}
++
++static inline void print_scheduler_version(void)
++{
++	printk(KERN_INFO"CFS CPU scheduler.\n");
++}
++
++static inline int iso_task(struct task_struct *p)
++{
++	return 0;
++}
++
++static inline void remove_cpu(unsigned long cpu)
++{
++}
++
++/* Anyone feel like implementing this? */
++static inline int above_background_load(void)
++{
++	return 1;
++}
++#endif /* CONFIG_SCHED_BFS */
++
+ /* Future-safe accessor for struct task_struct's cpus_allowed. */
+ #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
+ 
+@@ -1531,10 +1607,20 @@
+  */
+ 
+ #define MAX_USER_RT_PRIO	100
+-#define MAX_RT_PRIO		MAX_USER_RT_PRIO
++#define MAX_RT_PRIO		(MAX_USER_RT_PRIO + 1)
++#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
+ 
++#ifdef CONFIG_SCHED_BFS
++#define PRIO_RANGE		(40)
++#define MAX_PRIO		(MAX_RT_PRIO + PRIO_RANGE)
++#define ISO_PRIO		(MAX_RT_PRIO)
++#define NORMAL_PRIO		(MAX_RT_PRIO + 1)
++#define IDLE_PRIO		(MAX_RT_PRIO + 2)
++#define PRIO_LIMIT		((IDLE_PRIO) + 1)
++#else /* CONFIG_SCHED_BFS */
+ #define MAX_PRIO		(MAX_RT_PRIO + 40)
+-#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
++#define NORMAL_PRIO		DEFAULT_PRIO
++#endif /* CONFIG_SCHED_BFS */
+ 
+ static inline int rt_prio(int prio)
+ {
+@@ -1862,7 +1948,7 @@
+ extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
+ 
+ /* sched_exec is called by processes performing an exec */
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_BFS)
+ extern void sched_exec(void);
+ #else
+ #define sched_exec()   {}
+Index: linux-2.6.37-ck2/init/Kconfig
+===================================================================
+--- linux-2.6.37-ck2.orig/init/Kconfig	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/init/Kconfig	2011-02-14 09:47:50.988252001 +1100
+@@ -30,6 +30,19 @@
+ 
+ menu "General setup"
+ 
++config SCHED_BFS
++	bool "BFS cpu scheduler"
++	---help---
++	  The Brain Fuck CPU Scheduler for excellent interactivity and
++	  responsiveness on the desktop and solid scalability on normal
++          hardware. Not recommended for 4096 CPUs.
++
++	  Currently incompatible with the Group CPU scheduler, and RCU TORTURE
++          TEST so these options are disabled.
++
++          Say Y here.
++	default y
++
+ config EXPERIMENTAL
+ 	bool "Prompt for development and/or incomplete code/drivers"
+ 	---help---
+@@ -563,6 +576,7 @@
+ 
+ config CGROUP_CPUACCT
+ 	bool "Simple CPU accounting cgroup subsystem"
++	depends on !SCHED_BFS
+ 	help
+ 	  Provides a simple Resource Controller for monitoring the
+ 	  total CPU consumed by the tasks in a cgroup.
+@@ -629,7 +643,7 @@
+ 
+ menuconfig CGROUP_SCHED
+ 	bool "Group CPU scheduler"
+-	depends on EXPERIMENTAL
++	depends on EXPERIMENTAL && !SCHED_BFS
+ 	default n
+ 	help
+ 	  This feature lets CPU scheduler recognize task groups and control CPU
+Index: linux-2.6.37-ck2/init/main.c
+===================================================================
+--- linux-2.6.37-ck2.orig/init/main.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/init/main.c	2011-02-14 09:47:50.989252001 +1100
+@@ -824,6 +824,7 @@
+ 	system_state = SYSTEM_RUNNING;
+ 	numa_default_policy();
+ 
++	print_scheduler_version();
+ 
+ 	current->signal->flags |= SIGNAL_UNKILLABLE;
+ 
+Index: linux-2.6.37-ck2/kernel/delayacct.c
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/delayacct.c	2009-12-03 21:40:09.000000000 +1100
++++ linux-2.6.37-ck2/kernel/delayacct.c	2011-02-14 09:47:50.989252001 +1100
+@@ -128,7 +128,7 @@
+ 	 */
+ 	t1 = tsk->sched_info.pcount;
+ 	t2 = tsk->sched_info.run_delay;
+-	t3 = tsk->se.sum_exec_runtime;
++	t3 = tsk_seruntime(tsk);
+ 
+ 	d->cpu_count += t1;
+ 
+Index: linux-2.6.37-ck2/kernel/exit.c
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/exit.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/kernel/exit.c	2011-02-14 09:47:50.989252001 +1100
+@@ -132,7 +132,7 @@
+ 		sig->inblock += task_io_get_inblock(tsk);
+ 		sig->oublock += task_io_get_oublock(tsk);
+ 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
+-		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
++		sig->sum_sched_runtime += tsk_seruntime(tsk);
+ 	}
+ 
+ 	sig->nr_threads--;
+Index: linux-2.6.37-ck2/kernel/kthread.c
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/kthread.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/kernel/kthread.c	2011-02-14 09:47:50.989252001 +1100
+@@ -184,7 +184,9 @@
+ 	}
+ 
+ 	p->cpus_allowed = cpumask_of_cpu(cpu);
++#ifndef CONFIG_SCHED_BFS
+ 	p->rt.nr_cpus_allowed = 1;
++#endif
+ 	p->flags |= PF_THREAD_BOUND;
+ }
+ EXPORT_SYMBOL(kthread_bind);
+Index: linux-2.6.37-ck2/kernel/posix-cpu-timers.c
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/posix-cpu-timers.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/kernel/posix-cpu-timers.c	2011-02-14 09:47:50.990252001 +1100
+@@ -248,7 +248,7 @@
+ 	do {
+ 		times->utime = cputime_add(times->utime, t->utime);
+ 		times->stime = cputime_add(times->stime, t->stime);
+-		times->sum_exec_runtime += t->se.sum_exec_runtime;
++		times->sum_exec_runtime += tsk_seruntime(t);
+ 	} while_each_thread(tsk, t);
+ out:
+ 	rcu_read_unlock();
+@@ -508,7 +508,7 @@
+ void posix_cpu_timers_exit(struct task_struct *tsk)
+ {
+ 	cleanup_timers(tsk->cpu_timers,
+-		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
++		       tsk->utime, tsk->stime, tsk_seruntime(tsk));
+ 
+ }
+ void posix_cpu_timers_exit_group(struct task_struct *tsk)
+@@ -518,7 +518,7 @@
+ 	cleanup_timers(tsk->signal->cpu_timers,
+ 		       cputime_add(tsk->utime, sig->utime),
+ 		       cputime_add(tsk->stime, sig->stime),
+-		       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
++		       tsk_seruntime(tsk) + sig->sum_sched_runtime);
+ }
+ 
+ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
+@@ -949,7 +949,7 @@
+ 		struct cpu_timer_list *t = list_first_entry(timers,
+ 						      struct cpu_timer_list,
+ 						      entry);
+-		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
++		if (!--maxfire || tsk_seruntime(tsk) < t->expires.sched) {
+ 			tsk->cputime_expires.sched_exp = t->expires.sched;
+ 			break;
+ 		}
+@@ -966,7 +966,7 @@
+ 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
+ 
+ 		if (hard != RLIM_INFINITY &&
+-		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
++		    tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
+ 			/*
+ 			 * At the hard limit, we just die.
+ 			 * No need to calculate anything else now.
+@@ -974,7 +974,7 @@
+ 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
+ 			return;
+ 		}
+-		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
++		if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
+ 			/*
+ 			 * At the soft limit, send a SIGXCPU every second.
+ 			 */
+@@ -1276,7 +1276,7 @@
+ 		struct task_cputime task_sample = {
+ 			.utime = tsk->utime,
+ 			.stime = tsk->stime,
+-			.sum_exec_runtime = tsk->se.sum_exec_runtime
++			.sum_exec_runtime = tsk_seruntime(tsk)
+ 		};
+ 
+ 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
+Index: linux-2.6.37-ck2/kernel/sched_bfs.c
+===================================================================
+--- /dev/null	1970-01-01 00:00:00.000000000 +0000
++++ linux-2.6.37-ck2/kernel/sched_bfs.c	2011-02-14 10:11:00.294252001 +1100
+@@ -0,0 +1,7243 @@
++/*
++ *  kernel/sched_bfs.c, was sched.c
++ *
++ *  Kernel scheduler and related syscalls
++ *
++ *  Copyright (C) 1991-2002  Linus Torvalds
++ *
++ *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
++ *		make semaphores SMP safe
++ *  1998-11-19	Implemented schedule_timeout() and related stuff
++ *		by Andrea Arcangeli
++ *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
++ *		hybrid priority-list and round-robin design with
++ *		an array-switch method of distributing timeslices
++ *		and per-CPU runqueues.  Cleanups and useful suggestions
++ *		by Davide Libenzi, preemptible kernel bits by Robert Love.
++ *  2003-09-03	Interactivity tuning by Con Kolivas.
++ *  2004-04-02	Scheduler domains code by Nick Piggin
++ *  2007-04-15  Work begun on replacing all interactivity tuning with a
++ *              fair scheduling design by Con Kolivas.
++ *  2007-05-05  Load balancing (smp-nice) and other improvements
++ *              by Peter Williams
++ *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
++ *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
++ *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
++ *              Thomas Gleixner, Mike Kravetz
++ *  now		Brainfuck deadline scheduling policy by Con Kolivas deletes
++ *              a whole lot of those previous things.
++ */
++
++#include <linux/mm.h>
++#include <linux/module.h>
++#include <linux/nmi.h>
++#include <linux/init.h>
++#include <asm/uaccess.h>
++#include <linux/highmem.h>
++#include <linux/smp_lock.h>
++#include <asm/mmu_context.h>
++#include <linux/interrupt.h>
++#include <linux/capability.h>
++#include <linux/completion.h>
++#include <linux/kernel_stat.h>
++#include <linux/debug_locks.h>
++#include <linux/perf_event.h>
++#include <linux/security.h>
++#include <linux/notifier.h>
++#include <linux/profile.h>
++#include <linux/freezer.h>
++#include <linux/vmalloc.h>
++#include <linux/blkdev.h>
++#include <linux/delay.h>
++#include <linux/smp.h>
++#include <linux/threads.h>
++#include <linux/timer.h>
++#include <linux/rcupdate.h>
++#include <linux/cpu.h>
++#include <linux/cpuset.h>
++#include <linux/cpumask.h>
++#include <linux/percpu.h>
++#include <linux/proc_fs.h>
++#include <linux/seq_file.h>
++#include <linux/syscalls.h>
++#include <linux/times.h>
++#include <linux/tsacct_kern.h>
++#include <linux/kprobes.h>
++#include <linux/delayacct.h>
++#include <linux/log2.h>
++#include <linux/bootmem.h>
++#include <linux/ftrace.h>
++#include <linux/slab.h>
++
++#include <asm/tlb.h>
++#include <asm/unistd.h>
++
++#include "sched_cpupri.h"
++#include "workqueue_sched.h"
++
++#define CREATE_TRACE_POINTS
++#include <trace/events/sched.h>
++
++#define rt_prio(prio)		unlikely((prio) < MAX_RT_PRIO)
++#define rt_task(p)		rt_prio((p)->prio)
++#define rt_queue(rq)		rt_prio((rq)->rq_prio)
++#define batch_task(p)		(unlikely((p)->policy == SCHED_BATCH))
++#define is_rt_policy(policy)	((policy) == SCHED_FIFO || \
++					(policy) == SCHED_RR)
++#define has_rt_policy(p)	unlikely(is_rt_policy((p)->policy))
++#define idleprio_task(p)	unlikely((p)->policy == SCHED_IDLEPRIO)
++#define iso_task(p)		unlikely((p)->policy == SCHED_ISO)
++#define iso_queue(rq)		unlikely((rq)->rq_policy == SCHED_ISO)
++#define ISO_PERIOD		((5 * HZ * num_online_cpus()) + 1)
++
++/*
++ * Convert user-nice values [ -20 ... 0 ... 19 ]
++ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
++ * and back.
++ */
++#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
++#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
++#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
++
++/*
++ * 'User priority' is the nice value converted to something we
++ * can work with better when scaling various scheduler parameters,
++ * it's a [ 0 ... 39 ] range.
++ */
++#define USER_PRIO(p)		((p) - MAX_RT_PRIO)
++#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
++#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
++#define SCHED_PRIO(p)		((p) + MAX_RT_PRIO)
++#define STOP_PRIO		(MAX_RT_PRIO - 1)
++
++/*
++ * Some helpers for converting to/from various scales. Use shifts to get
++ * approximate multiples of ten for less overhead.
++ */
++#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))
++#define JIFFY_NS		(1000000000 / HZ)
++#define HALF_JIFFY_NS		(1000000000 / HZ / 2)
++#define HALF_JIFFY_US		(1000000 / HZ / 2)
++#define MS_TO_NS(TIME)		((TIME) << 20)
++#define MS_TO_US(TIME)		((TIME) << 10)
++#define NS_TO_MS(TIME)		((TIME) >> 20)
++#define NS_TO_US(TIME)		((TIME) >> 10)
++
++#define RESCHED_US	(100) /* Reschedule if less than this many μs left */
++
++/*
++ * This is the time all tasks within the same priority round robin.
++ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus.
++ * Tunable via /proc interface.
++ */
++int rr_interval __read_mostly = 6;
++
++/*
++ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
++ * are allowed to run five seconds as real time tasks. This is the total over
++ * all online cpus.
++ */
++int sched_iso_cpu __read_mostly = 70;
++
++/*
++ * The relative length of deadline for each priority(nice) level.
++ */
++static int prio_ratios[PRIO_RANGE] __read_mostly;
++
++/*
++ * The quota handed out to tasks of all priority levels when refilling their
++ * time_slice.
++ */
++static inline unsigned long timeslice(void)
++{
++	return MS_TO_US(rr_interval);
++}
++
++/*
++ * The global runqueue data that all CPUs work off. Data is protected either
++ * by the global grq lock, or the discrete lock that precedes the data in this
++ * struct.
++ */
++struct global_rq {
++	raw_spinlock_t lock;
++	unsigned long nr_running;
++	unsigned long nr_uninterruptible;
++	unsigned long long nr_switches;
++	struct list_head queue[PRIO_LIMIT];
++	DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1);
++#ifdef CONFIG_SMP
++	unsigned long qnr; /* queued not running */
++	cpumask_t cpu_idle_map;
++	int idle_cpus;
++#endif
++	u64 niffies; /* Nanosecond jiffies */
++	unsigned long last_jiffy; /* Last jiffy we updated niffies */
++
++	raw_spinlock_t iso_lock;
++	int iso_ticks;
++	int iso_refractory;
++};
++
++/* There can be only one */
++static struct global_rq grq;
++
++/*
++ * This is the main, per-CPU runqueue data structure.
++ * This data should only be modified by the local cpu.
++ */
++struct rq {
++#ifdef CONFIG_SMP
++#ifdef CONFIG_NO_HZ
++	u64 nohz_stamp;
++	unsigned char in_nohz_recently;
++#endif
++#endif
++
++	struct task_struct *curr, *idle, *stop;
++	struct mm_struct *prev_mm;
++
++	/* Stored data about rq->curr to work outside grq lock */
++	u64 rq_deadline;
++	unsigned int rq_policy;
++	int rq_time_slice;
++	u64 rq_last_ran;
++	int rq_prio;
++	int rq_running; /* There is a task running */
++
++	/* Accurate timekeeping data */
++	u64 timekeep_clock;
++	unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc,
++		iowait_pc, idle_pc;
++	atomic_t nr_iowait;
++
++#ifdef CONFIG_SMP
++	int cpu;		/* cpu of this runqueue */
++	int online;
++
++	struct root_domain *rd;
++	struct sched_domain *sd;
++	unsigned long *cpu_locality; /* CPU relative cache distance */
++#ifdef CONFIG_SCHED_SMT
++	int (*siblings_idle)(unsigned long cpu);
++	/* See if all smt siblings are idle */
++	cpumask_t smt_siblings;
++#endif
++#ifdef CONFIG_SCHED_MC
++	int (*cache_idle)(unsigned long cpu);
++	/* See if all cache siblings are idle */
++	cpumask_t cache_siblings;
++#endif
++	u64 last_niffy; /* Last time this RQ updated grq.niffies */
++#endif
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++	u64 prev_irq_time;
++#endif
++	u64 clock, old_clock, last_tick;
++	u64 clock_task;
++	int dither;
++
++#ifdef CONFIG_SCHEDSTATS
++
++	/* latency stats */
++	struct sched_info rq_sched_info;
++	unsigned long long rq_cpu_time;
++	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
++
++	/* sys_sched_yield() stats */
++	unsigned int yld_count;
++
++	/* schedule() stats */
++	unsigned int sched_switch;
++	unsigned int sched_count;
++	unsigned int sched_goidle;
++
++	/* try_to_wake_up() stats */
++	unsigned int ttwu_count;
++	unsigned int ttwu_local;
++
++	/* BKL stats */
++	unsigned int bkl_count;
++#endif
++};
++
++static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
++static DEFINE_MUTEX(sched_hotcpu_mutex);
++
++#ifdef CONFIG_SMP
++/*
++ * sched_domains_mutex serializes calls to arch_init_sched_domains,
++ * detach_destroy_domains and partition_sched_domains.
++ */
++static DEFINE_MUTEX(sched_domains_mutex);
++
++/*
++ * By default the system creates a single root-domain with all cpus as
++ * members (mimicking the global state we have today).
++ */
++static struct root_domain def_root_domain;
++
++int __weak arch_sd_sibling_asym_packing(void)
++{
++       return 0*SD_ASYM_PACKING;
++}
++#endif
++
++/*
++ * We add the notion of a root-domain which will be used to define per-domain
++ * variables. Each exclusive cpuset essentially defines an island domain by
++ * fully partitioning the member cpus from any other cpuset. Whenever a new
++ * exclusive cpuset is created, we also create and attach a new root-domain
++ * object.
++ *
++ */
++struct root_domain {
++	atomic_t refcount;
++	cpumask_var_t span;
++	cpumask_var_t online;
++
++	/*
++	 * The "RT overload" flag: it gets set if a CPU has more than
++	 * one runnable RT task.
++	 */
++	cpumask_var_t rto_mask;
++	atomic_t rto_count;
++#ifdef CONFIG_SMP
++	struct cpupri cpupri;
++#endif
++};
++
++#define rcu_dereference_check_sched_domain(p) \
++	rcu_dereference_check((p), \
++			      rcu_read_lock_sched_held() || \
++			      lockdep_is_held(&sched_domains_mutex))
++
++/*
++ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
++ * See detach_destroy_domains: synchronize_sched for details.
++ *
++ * The domain tree of any CPU may only be accessed from within
++ * preempt-disabled sections.
++ */
++#define for_each_domain(cpu, __sd) \
++	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
++
++static inline void update_rq_clock(struct rq *rq);
++
++/*
++ * Sanity check should sched_clock return bogus values. We make sure it does
++ * not appear to go backwards, and use jiffies to determine the maximum and
++ * minimum it could possibly have increased, and round down to the nearest
++ * jiffy when it falls outside this.
++ */
++static inline void niffy_diff(s64 *niff_diff, int jiff_diff)
++{
++	unsigned long min_diff, max_diff;
++
++	if (jiff_diff > 1)
++		min_diff = JIFFIES_TO_NS(jiff_diff - 1);
++	else
++		min_diff = 1;
++	/*  Round up to the nearest tick for maximum */
++	max_diff = JIFFIES_TO_NS(jiff_diff + 1);
++
++	if (unlikely(*niff_diff < min_diff || *niff_diff > max_diff))
++		*niff_diff = min_diff;
++}
++
++#ifdef CONFIG_SMP
++#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
++#define this_rq()		(&__get_cpu_var(runqueues))
++#define task_rq(p)		cpu_rq(task_cpu(p))
++#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
++static inline int cpu_of(struct rq *rq)
++{
++	return rq->cpu;
++}
++
++/*
++ * Niffies are a globally increasing nanosecond counter. Whenever a runqueue
++ * clock is updated with the grq.lock held, it is an opportunity to update the
++ * niffies value. Any CPU can update it by adding how much its clock has
++ * increased since it last updated niffies, minus any added niffies by other
++ * CPUs.
++ */
++static inline void update_clocks(struct rq *rq)
++{
++	s64 ndiff;
++	long jdiff;
++
++	update_rq_clock(rq);
++	ndiff = rq->clock - rq->old_clock;
++	/* old_clock is only updated when we are updating niffies */
++	rq->old_clock = rq->clock;
++	ndiff -= grq.niffies - rq->last_niffy;
++	jdiff = jiffies - grq.last_jiffy;
++	niffy_diff(&ndiff, jdiff);
++	grq.last_jiffy += jdiff;
++	grq.niffies += ndiff;
++	rq->last_niffy = grq.niffies;
++}
++#else /* CONFIG_SMP */
++static struct rq *uprq;
++#define cpu_rq(cpu)	(uprq)
++#define this_rq()	(uprq)
++#define task_rq(p)	(uprq)
++#define cpu_curr(cpu)	((uprq)->curr)
++static inline int cpu_of(struct rq *rq)
++{
++	return 0;
++}
++
++static inline void update_clocks(struct rq *rq)
++{
++	s64 ndiff;
++	long jdiff;
++
++	update_rq_clock(rq);
++	ndiff = rq->clock - rq->old_clock;
++	rq->old_clock = rq->clock;
++	jdiff = jiffies - grq.last_jiffy;
++	niffy_diff(&ndiff, jdiff);
++	grq.last_jiffy += jdiff;
++	grq.niffies += ndiff;
++}
++#endif
++#define raw_rq()	(&__raw_get_cpu_var(runqueues))
++
++#include "sched_stats.h"
++
++#ifndef prepare_arch_switch
++# define prepare_arch_switch(next)	do { } while (0)
++#endif
++#ifndef finish_arch_switch
++# define finish_arch_switch(prev)	do { } while (0)
++#endif
++
++/*
++ * All common locking functions performed on grq.lock. rq->clock is local to
++ * the CPU accessing it so it can be modified just with interrupts disabled
++ * when we're not updating niffies.
++ * Looking up task_rq must be done under grq.lock to be safe.
++ */
++static void update_rq_clock_task(struct rq *rq, s64 delta);
++
++static inline void update_rq_clock(struct rq *rq)
++{
++	s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
++
++	rq->clock += delta;
++	update_rq_clock_task(rq, delta);
++}
++
++static inline int task_running(struct task_struct *p)
++{
++	return p->oncpu;
++}
++
++static inline void grq_lock(void)
++	__acquires(grq.lock)
++{
++	raw_spin_lock(&grq.lock);
++}
++
++static inline void grq_unlock(void)
++	__releases(grq.lock)
++{
++	raw_spin_unlock(&grq.lock);
++}
++
++static inline void grq_lock_irq(void)
++	__acquires(grq.lock)
++{
++	raw_spin_lock_irq(&grq.lock);
++}
++
++static inline void time_lock_grq(struct rq *rq)
++	__acquires(grq.lock)
++{
++	grq_lock();
++	update_clocks(rq);
++}
++
++static inline void grq_unlock_irq(void)
++	__releases(grq.lock)
++{
++	raw_spin_unlock_irq(&grq.lock);
++}
++
++static inline void grq_lock_irqsave(unsigned long *flags)
++	__acquires(grq.lock)
++{
++	raw_spin_lock_irqsave(&grq.lock, *flags);
++}
++
++static inline void grq_unlock_irqrestore(unsigned long *flags)
++	__releases(grq.lock)
++{
++	raw_spin_unlock_irqrestore(&grq.lock, *flags);
++}
++
++static inline struct rq
++*task_grq_lock(struct task_struct *p, unsigned long *flags)
++	__acquires(grq.lock)
++{
++	grq_lock_irqsave(flags);
++	return task_rq(p);
++}
++
++static inline struct rq
++*time_task_grq_lock(struct task_struct *p, unsigned long *flags)
++	__acquires(grq.lock)
++{
++	struct rq *rq = task_grq_lock(p, flags);
++	update_clocks(rq);
++	return rq;
++}
++
++static inline struct rq *task_grq_lock_irq(struct task_struct *p)
++	__acquires(grq.lock)
++{
++	grq_lock_irq();
++	return task_rq(p);
++}
++
++static inline void time_task_grq_lock_irq(struct task_struct *p)
++	__acquires(grq.lock)
++{
++	struct rq *rq = task_grq_lock_irq(p);
++	update_clocks(rq);
++}
++
++static inline void task_grq_unlock_irq(void)
++	__releases(grq.lock)
++{
++	grq_unlock_irq();
++}
++
++static inline void task_grq_unlock(unsigned long *flags)
++	__releases(grq.lock)
++{
++	grq_unlock_irqrestore(flags);
++}
++
++/**
++ * grunqueue_is_locked
++ *
++ * Returns true if the global runqueue is locked.
++ * This interface allows printk to be called with the runqueue lock
++ * held and know whether or not it is OK to wake up the klogd.
++ */
++inline int grunqueue_is_locked(void)
++{
++	return raw_spin_is_locked(&grq.lock);
++}
++
++inline void grq_unlock_wait(void)
++	__releases(grq.lock)
++{
++	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
++	raw_spin_unlock_wait(&grq.lock);
++}
++
++static inline void time_grq_lock(struct rq *rq, unsigned long *flags)
++	__acquires(grq.lock)
++{
++	local_irq_save(*flags);
++	time_lock_grq(rq);
++}
++
++static inline struct rq *__task_grq_lock(struct task_struct *p)
++	__acquires(grq.lock)
++{
++	grq_lock();
++	return task_rq(p);
++}
++
++static inline void __task_grq_unlock(void)
++	__releases(grq.lock)
++{
++	grq_unlock();
++}
++
++/*
++ * Look for any tasks *anywhere* that are running nice 0 or better. We do
++ * this lockless for overhead reasons since the occasional wrong result
++ * is harmless.
++ */
++int above_background_load(void)
++{
++	struct task_struct *cpu_curr;
++	unsigned long cpu;
++
++	for_each_online_cpu(cpu) {
++		cpu_curr = cpu_rq(cpu)->curr;
++		if (unlikely(!cpu_curr))
++			continue;
++		if (PRIO_TO_NICE(cpu_curr->static_prio) < 1)
++			return 1;
++	}
++	return 0;
++}
++
++#ifndef __ARCH_WANT_UNLOCKED_CTXSW
++static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
++{
++}
++
++static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
++{
++#ifdef CONFIG_DEBUG_SPINLOCK
++	/* this is a valid case when another task releases the spinlock */
++	grq.lock.owner = current;
++#endif
++	/*
++	 * If we are tracking spinlock dependencies then we have to
++	 * fix up the runqueue lock - which gets 'carried over' from
++	 * prev into current:
++	 */
++	spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_);
++
++	grq_unlock_irq();
++}
++
++#else /* __ARCH_WANT_UNLOCKED_CTXSW */
++
++static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
++{
++#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
++	grq_unlock_irq();
++#else
++	grq_unlock();
++#endif
++}
++
++static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
++{
++	smp_wmb();
++#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
++	local_irq_enable();
++#endif
++}
++#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
++
++static inline int deadline_before(u64 deadline, u64 time)
++{
++	return (deadline < time);
++}
++
++static inline int deadline_after(u64 deadline, u64 time)
++{
++	return (deadline > time);
++}
++
++/*
++ * A task that is queued but not running will be on the grq run list.
++ * A task that is not running or queued will not be on the grq run list.
++ * A task that is currently running will have ->oncpu set but not on the
++ * grq run list.
++ */
++static inline int task_queued(struct task_struct *p)
++{
++	return (!list_empty(&p->run_list));
++}
++
++/*
++ * Removing from the global runqueue. Enter with grq locked.
++ */
++static void dequeue_task(struct task_struct *p)
++{
++	list_del_init(&p->run_list);
++	if (list_empty(grq.queue + p->prio))
++		__clear_bit(p->prio, grq.prio_bitmap);
++}
++
++/*
++ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
++ * an idle task, we ensure none of the following conditions are met.
++ */
++static int idleprio_suitable(struct task_struct *p)
++{
++	return (!freezing(p) && !signal_pending(p) &&
++		!(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)));
++}
++
++/*
++ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
++ * that the iso_refractory flag is not set.
++ */
++static int isoprio_suitable(void)
++{
++	return !grq.iso_refractory;
++}
++
++/*
++ * Adding to the global runqueue. Enter with grq locked.
++ */
++static void enqueue_task(struct task_struct *p)
++{
++	if (!rt_task(p)) {
++		/* Check it hasn't gotten rt from PI */
++		if ((idleprio_task(p) && idleprio_suitable(p)) ||
++		   (iso_task(p) && isoprio_suitable()))
++			p->prio = p->normal_prio;
++		else
++			p->prio = NORMAL_PRIO;
++	}
++	__set_bit(p->prio, grq.prio_bitmap);
++	list_add_tail(&p->run_list, grq.queue + p->prio);
++	sched_info_queued(p);
++}
++
++/* Only idle task does this as a real time task*/
++static inline void enqueue_task_head(struct task_struct *p)
++{
++	__set_bit(p->prio, grq.prio_bitmap);
++	list_add(&p->run_list, grq.queue + p->prio);
++	sched_info_queued(p);
++}
++
++static inline void requeue_task(struct task_struct *p)
++{
++	sched_info_queued(p);
++}
++
++/*
++ * Returns the relative length of deadline all compared to the shortest
++ * deadline which is that of nice -20.
++ */
++static inline int task_prio_ratio(struct task_struct *p)
++{
++	return prio_ratios[TASK_USER_PRIO(p)];
++}
++
++/*
++ * task_timeslice - all tasks of all priorities get the exact same timeslice
++ * length. CPU distribution is handled by giving different deadlines to
++ * tasks of different priorities. Use 128 as the base value for fast shifts.
++ */
++static inline int task_timeslice(struct task_struct *p)
++{
++	return (rr_interval * task_prio_ratio(p) / 128);
++}
++
++#ifdef CONFIG_SMP
++/*
++ * qnr is the "queued but not running" count which is the total number of
++ * tasks on the global runqueue list waiting for cpu time but not actually
++ * currently running on a cpu.
++ */
++static inline void inc_qnr(void)
++{
++	grq.qnr++;
++}
++
++static inline void dec_qnr(void)
++{
++	grq.qnr--;
++}
++
++static inline int queued_notrunning(void)
++{
++	return grq.qnr;
++}
++
++/*
++ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
++ * allow easy lookup of whether any suitable idle CPUs are available.
++ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
++ * idle_cpus variable than to do a full bitmask check when we are busy.
++ */
++static inline void set_cpuidle_map(unsigned long cpu)
++{
++	if (likely(cpu_online(cpu))) {
++		cpu_set(cpu, grq.cpu_idle_map);
++		grq.idle_cpus = 1;
++	}
++}
++
++static inline void clear_cpuidle_map(unsigned long cpu)
++{
++	cpu_clear(cpu, grq.cpu_idle_map);
++	if (cpus_empty(grq.cpu_idle_map))
++		grq.idle_cpus = 0;
++}
++
++static int suitable_idle_cpus(struct task_struct *p)
++{
++	if (!grq.idle_cpus)
++		return 0;
++	return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map));
++}
++
++static void resched_task(struct task_struct *p);
++
++#define CPUIDLE_DIFF_THREAD	(1)
++#define CPUIDLE_DIFF_CORE	(2)
++#define CPUIDLE_CACHE_BUSY	(4)
++#define CPUIDLE_DIFF_CPU	(8)
++#define CPUIDLE_THREAD_BUSY	(16)
++#define CPUIDLE_DIFF_NODE	(32)
++
++/*
++ * The best idle CPU is chosen according to the CPUIDLE ranking above where the
++ * lowest value would give the most suitable CPU to schedule p onto next. We
++ * iterate from the last CPU upwards instead of using for_each_cpu_mask so as
++ * to be able to break out immediately if the last CPU is idle. The order works
++ * out to be the following:
++ *
++ * Same core, idle or busy cache, idle threads
++ * Other core, same cache, idle or busy cache, idle threads.
++ * Same node, other CPU, idle cache, idle threads.
++ * Same node, other CPU, busy cache, idle threads.
++ * Same core, busy threads.
++ * Other core, same cache, busy threads.
++ * Same node, other CPU, busy threads.
++ * Other node, other CPU, idle cache, idle threads.
++ * Other node, other CPU, busy cache, idle threads.
++ * Other node, other CPU, busy threads.
++ *
++ * If p was the last task running on this rq, then regardless of where
++ * it has been running since then, it is cache warm on this rq.
++ */
++static void resched_best_idle(struct task_struct *p)
++{
++	unsigned long cpu_tmp, best_cpu, best_ranking;
++	cpumask_t tmpmask;
++	struct rq *rq;
++	int iterate;
++
++	cpus_and(tmpmask, p->cpus_allowed, grq.cpu_idle_map);
++	iterate = cpus_weight(tmpmask);
++	best_cpu = task_cpu(p);
++	/*
++	 * Start below the last CPU and work up with next_cpu as the last
++	 * CPU might not be idle or affinity might not allow it.
++	 */
++	cpu_tmp = best_cpu - 1;
++	rq = cpu_rq(best_cpu);
++	best_ranking = ~0UL;
++
++	do {
++		unsigned long ranking;
++		struct rq *tmp_rq;
++
++		ranking = 0;
++		cpu_tmp = next_cpu(cpu_tmp, tmpmask);
++		if (cpu_tmp >= nr_cpu_ids) {
++			cpu_tmp = -1;
++			cpu_tmp = next_cpu(cpu_tmp, tmpmask);
++		}
++		tmp_rq = cpu_rq(cpu_tmp);
++
++#ifdef CONFIG_NUMA
++		if (rq->cpu_locality[cpu_tmp] > 3)
++			ranking |= CPUIDLE_DIFF_NODE;
++		else
++#endif
++		if (rq->cpu_locality[cpu_tmp] > 2)
++			ranking |= CPUIDLE_DIFF_CPU;
++#ifdef CONFIG_SCHED_MC
++		if (rq->cpu_locality[cpu_tmp] == 2)
++			ranking |= CPUIDLE_DIFF_CORE;
++		if (!(tmp_rq->cache_idle(cpu_tmp)))
++			ranking |= CPUIDLE_CACHE_BUSY;
++#endif
++#ifdef CONFIG_SCHED_SMT
++		if (rq->cpu_locality[cpu_tmp] == 1)
++			ranking |= CPUIDLE_DIFF_THREAD;
++		if (!(tmp_rq->siblings_idle(cpu_tmp)))
++			ranking |= CPUIDLE_THREAD_BUSY;
++#endif
++		if (ranking < best_ranking) {
++			best_cpu = cpu_tmp;
++			if (ranking == 0)
++				break;
++			best_ranking = ranking;
++		}
++	} while (--iterate > 0);
++
++	resched_task(cpu_rq(best_cpu)->curr);
++}
++
++static inline void resched_suitable_idle(struct task_struct *p)
++{
++	if (suitable_idle_cpus(p))
++		resched_best_idle(p);
++}
++
++/*
++ * The cpu cache locality difference between CPUs is used to determine how far
++ * to offset the virtual deadline. <2 difference in locality means that one
++ * timeslice difference is allowed longer for the cpu local tasks. This is
++ * enough in the common case when tasks are up to 2* number of CPUs to keep
++ * tasks within their shared cache CPUs only. CPUs on different nodes or not
++ * even in this domain (NUMA) have "4" difference, allowing 4 times longer
++ * deadlines before being taken onto another cpu, allowing for 2* the double
++ * seen by separate CPUs above.
++ * Simple summary: Virtual deadlines are equal on shared cache CPUs, double
++ * on separate CPUs and quadruple in separate NUMA nodes.
++ */
++static inline int
++cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p)
++{
++	int locality = rq->cpu_locality[cpu_of(task_rq)] - 2;
++
++	if (locality > 0)
++		return task_timeslice(p) << locality;
++	return 0;
++}
++#else /* CONFIG_SMP */
++static inline void inc_qnr(void)
++{
++}
++
++static inline void dec_qnr(void)
++{
++}
++
++static inline int queued_notrunning(void)
++{
++	return grq.nr_running;
++}
++
++static inline void set_cpuidle_map(unsigned long cpu)
++{
++}
++
++static inline void clear_cpuidle_map(unsigned long cpu)
++{
++}
++
++static inline int suitable_idle_cpus(struct task_struct *p)
++{
++	return uprq->curr == uprq->idle;
++}
++
++static inline void resched_suitable_idle(struct task_struct *p)
++{
++}
++
++static inline int
++cache_distance(struct rq *task_rq, struct rq *rq, struct task_struct *p)
++{
++	return 0;
++}
++#endif /* CONFIG_SMP */
++
++/*
++ * activate_idle_task - move idle task to the _front_ of runqueue.
++ */
++static inline void activate_idle_task(struct task_struct *p)
++{
++	enqueue_task_head(p);
++	grq.nr_running++;
++	inc_qnr();
++}
++
++static inline int normal_prio(struct task_struct *p)
++{
++	if (has_rt_policy(p))
++		return MAX_RT_PRIO - 1 - p->rt_priority;
++	if (idleprio_task(p))
++		return IDLE_PRIO;
++	if (iso_task(p))
++		return ISO_PRIO;
++	return NORMAL_PRIO;
++}
++
++/*
++ * Calculate the current priority, i.e. the priority
++ * taken into account by the scheduler. This value might
++ * be boosted by RT tasks as it will be RT if the task got
++ * RT-boosted. If not then it returns p->normal_prio.
++ */
++static int effective_prio(struct task_struct *p)
++{
++	p->normal_prio = normal_prio(p);
++	/*
++	 * If we are RT tasks or we were boosted to RT priority,
++	 * keep the priority unchanged. Otherwise, update priority
++	 * to the normal priority:
++	 */
++	if (!rt_prio(p->prio))
++		return p->normal_prio;
++	return p->prio;
++}
++
++/*
++ * activate_task - move a task to the runqueue. Enter with grq locked.
++ */
++static void activate_task(struct task_struct *p, struct rq *rq)
++{
++	update_clocks(rq);
++
++	/*
++	 * Sleep time is in units of nanosecs, so shift by 20 to get a
++	 * milliseconds-range estimation of the amount of time that the task
++	 * spent sleeping:
++	 */
++	if (unlikely(prof_on == SLEEP_PROFILING)) {
++		if (p->state == TASK_UNINTERRUPTIBLE)
++			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
++				     (rq->clock - p->last_ran) >> 20);
++	}
++
++	p->prio = effective_prio(p);
++	if (task_contributes_to_load(p))
++		grq.nr_uninterruptible--;
++	enqueue_task(p);
++	grq.nr_running++;
++	inc_qnr();
++}
++
++/*
++ * deactivate_task - If it's running, it's not on the grq and we can just
++ * decrement the nr_running. Enter with grq locked.
++ */
++static inline void deactivate_task(struct task_struct *p)
++{
++	if (task_contributes_to_load(p))
++		grq.nr_uninterruptible++;
++	grq.nr_running--;
++}
++
++#ifdef CONFIG_SMP
++void set_task_cpu(struct task_struct *p, unsigned int cpu)
++{
++	trace_sched_migrate_task(p, cpu);
++	if (task_cpu(p) != cpu)
++		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
++
++	/*
++	 * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be
++	 * successfuly executed on another CPU. We must ensure that updates of
++	 * per-task data have been completed by this moment.
++	 */
++	smp_wmb();
++	task_thread_info(p)->cpu = cpu;
++}
++#endif
++
++/*
++ * Move a task off the global queue and take it to a cpu for it will
++ * become the running task.
++ */
++static inline void take_task(struct rq *rq, struct task_struct *p)
++{
++	set_task_cpu(p, cpu_of(rq));
++	dequeue_task(p);
++	dec_qnr();
++}
++
++/*
++ * Returns a descheduling task to the grq runqueue unless it is being
++ * deactivated.
++ */
++static inline void return_task(struct task_struct *p, int deactivate)
++{
++	if (deactivate)
++		deactivate_task(p);
++	else {
++		inc_qnr();
++		enqueue_task(p);
++	}
++}
++
++/*
++ * resched_task - mark a task 'to be rescheduled now'.
++ *
++ * On UP this means the setting of the need_resched flag, on SMP it
++ * might also involve a cross-CPU call to trigger the scheduler on
++ * the target CPU.
++ */
++#ifdef CONFIG_SMP
++
++#ifndef tsk_is_polling
++#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
++#endif
++
++static void resched_task(struct task_struct *p)
++{
++	int cpu;
++
++	assert_raw_spin_locked(&grq.lock);
++
++	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
++		return;
++
++	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
++
++	cpu = task_cpu(p);
++	if (cpu == smp_processor_id())
++		return;
++
++	/* NEED_RESCHED must be visible before we test polling */
++	smp_mb();
++	if (!tsk_is_polling(p))
++		smp_send_reschedule(cpu);
++}
++
++#else
++static inline void resched_task(struct task_struct *p)
++{
++	assert_raw_spin_locked(&grq.lock);
++	set_tsk_need_resched(p);
++}
++#endif
++
++/**
++ * task_curr - is this task currently executing on a CPU?
++ * @p: the task in question.
++ */
++inline int task_curr(const struct task_struct *p)
++{
++	return cpu_curr(task_cpu(p)) == p;
++}
++
++#ifdef CONFIG_SMP
++struct migration_req {
++	struct task_struct *task;
++	int dest_cpu;
++};
++
++/*
++ * wait_task_inactive - wait for a thread to unschedule.
++ *
++ * If @match_state is nonzero, it's the @p->state value just checked and
++ * not expected to change.  If it changes, i.e. @p might have woken up,
++ * then return zero.  When we succeed in waiting for @p to be off its CPU,
++ * we return a positive number (its total switch count).  If a second call
++ * a short while later returns the same number, the caller can be sure that
++ * @p has remained unscheduled the whole time.
++ *
++ * The caller must ensure that the task *will* unschedule sometime soon,
++ * else this function might spin for a *long* time. This function can't
++ * be called with interrupts off, or it may introduce deadlock with
++ * smp_call_function() if an IPI is sent by the same process we are
++ * waiting to become inactive.
++ */
++unsigned long wait_task_inactive(struct task_struct *p, long match_state)
++{
++	unsigned long flags;
++	int running, on_rq;
++	unsigned long ncsw;
++	struct rq *rq;
++
++	for (;;) {
++		/*
++		 * We do the initial early heuristics without holding
++		 * any task-queue locks at all. We'll only try to get
++		 * the runqueue lock when things look like they will
++		 * work out! In the unlikely event rq is dereferenced
++		 * since we're lockless, grab it again.
++		 */
++#ifdef CONFIG_SMP
++retry_rq:
++		rq = task_rq(p);
++		if (unlikely(!rq))
++			goto retry_rq;
++#else /* CONFIG_SMP */
++		rq = task_rq(p);
++#endif
++		/*
++		 * If the task is actively running on another CPU
++		 * still, just relax and busy-wait without holding
++		 * any locks.
++		 *
++		 * NOTE! Since we don't hold any locks, it's not
++		 * even sure that "rq" stays as the right runqueue!
++		 * But we don't care, since this will return false
++		 * if the runqueue has changed and p is actually now
++		 * running somewhere else!
++		 */
++		while (task_running(p) && p == rq->curr) {
++			if (match_state && unlikely(p->state != match_state))
++				return 0;
++			cpu_relax();
++		}
++
++		/*
++		 * Ok, time to look more closely! We need the grq
++		 * lock now, to be *sure*. If we're wrong, we'll
++		 * just go back and repeat.
++		 */
++		rq = task_grq_lock(p, &flags);
++		trace_sched_wait_task(p);
++		running = task_running(p);
++		on_rq = task_queued(p);
++		ncsw = 0;
++		if (!match_state || p->state == match_state)
++			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
++		task_grq_unlock(&flags);
++
++		/*
++		 * If it changed from the expected state, bail out now.
++		 */
++		if (unlikely(!ncsw))
++			break;
++
++		/*
++		 * Was it really running after all now that we
++		 * checked with the proper locks actually held?
++		 *
++		 * Oops. Go back and try again..
++		 */
++		if (unlikely(running)) {
++			cpu_relax();
++			continue;
++		}
++
++		/*
++		 * It's not enough that it's not actively running,
++		 * it must be off the runqueue _entirely_, and not
++		 * preempted!
++		 *
++		 * So if it was still runnable (but just not actively
++		 * running right now), it's preempted, and we should
++		 * yield - it could be a while.
++		 */
++		if (unlikely(on_rq)) {
++			schedule_timeout_uninterruptible(1);
++			continue;
++		}
++
++		/*
++		 * Ahh, all good. It wasn't running, and it wasn't
++		 * runnable, which means that it will never become
++		 * running in the future either. We're all done!
++		 */
++		break;
++	}
++
++	return ncsw;
++}
++
++/***
++ * kick_process - kick a running thread to enter/exit the kernel
++ * @p: the to-be-kicked thread
++ *
++ * Cause a process which is running on another CPU to enter
++ * kernel-mode, without any delay. (to get signals handled.)
++ *
++ * NOTE: this function doesnt have to take the runqueue lock,
++ * because all it wants to ensure is that the remote task enters
++ * the kernel. If the IPI races and the task has been migrated
++ * to another CPU then no harm is done and the purpose has been
++ * achieved as well.
++ */
++void kick_process(struct task_struct *p)
++{
++	int cpu;
++
++	preempt_disable();
++	cpu = task_cpu(p);
++	if ((cpu != smp_processor_id()) && task_curr(p))
++		smp_send_reschedule(cpu);
++	preempt_enable();
++}
++EXPORT_SYMBOL_GPL(kick_process);
++#endif
++
++#define rq_idle(rq)	((rq)->rq_prio == PRIO_LIMIT)
++
++/*
++ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
++ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
++ * between themselves, they cooperatively multitask. An idle rq scores as
++ * prio PRIO_LIMIT so it is always preempted.
++ */
++static inline int
++can_preempt(struct task_struct *p, int prio, u64 deadline,
++	    unsigned int policy)
++{
++	/* Better static priority RT task or better policy preemption */
++	if (p->prio < prio)
++		return 1;
++	if (p->prio > prio)
++		return 0;
++	/* SCHED_NORMAL, BATCH and ISO will preempt based on deadline */
++	if (!deadline_before(p->deadline, deadline))
++		return 0;
++	return 1;
++}
++#ifdef CONFIG_SMP
++#ifdef CONFIG_HOTPLUG_CPU
++/*
++ * Check to see if there is a task that is affined only to offline CPUs but
++ * still wants runtime. This happens to kernel threads during suspend/halt and
++ * disabling of CPUs.
++ */
++static inline int online_cpus(struct task_struct *p)
++{
++	return (likely(cpus_intersects(cpu_online_map, p->cpus_allowed)));
++}
++#else /* CONFIG_HOTPLUG_CPU */
++/* All available CPUs are always online without hotplug. */
++static inline int online_cpus(struct task_struct *p)
++{
++	return 1;
++}
++#endif
++
++/*
++ * Check to see if p can run on cpu, and if not, whether there are any online
++ * CPUs it can run on instead.
++ */
++static inline int needs_other_cpu(struct task_struct *p, int cpu)
++{
++	if (unlikely(!cpu_isset(cpu, p->cpus_allowed)))
++		return 1;
++	return 0;
++}
++
++/*
++ * latest_deadline and highest_prio_rq are initialised only to silence the
++ * compiler. When all else is equal, still prefer this_rq.
++ */
++static void try_preempt(struct task_struct *p, struct rq *this_rq)
++{
++	struct rq *highest_prio_rq = this_rq;
++	u64 latest_deadline;
++	unsigned long cpu;
++	int highest_prio;
++	cpumask_t tmp;
++
++	if (suitable_idle_cpus(p)) {
++		resched_best_idle(p);
++		return;
++	}
++
++	/* IDLEPRIO tasks never preempt anything */
++	if (p->policy == SCHED_IDLEPRIO)
++		return;
++
++	if (likely(online_cpus(p)))
++		cpus_and(tmp, cpu_online_map, p->cpus_allowed);
++	else
++		return;
++
++	latest_deadline = 0;
++	highest_prio = -1;
++
++	for_each_cpu_mask(cpu, tmp) {
++		u64 offset_deadline;
++		struct rq *rq;
++		int rq_prio;
++
++		rq = cpu_rq(cpu);
++		rq_prio = rq->rq_prio;
++		if (rq_prio < highest_prio)
++			continue;
++
++		offset_deadline = rq->rq_deadline -
++				  cache_distance(this_rq, rq, p);
++
++		if (rq_prio > highest_prio || (rq_prio == highest_prio &&
++		    deadline_after(offset_deadline, latest_deadline))) {
++			latest_deadline = offset_deadline;
++			highest_prio = rq_prio;
++			highest_prio_rq = rq;
++		}
++	}
++
++	if (!can_preempt(p, highest_prio, highest_prio_rq->rq_deadline,
++	    highest_prio_rq->rq_policy))
++		return;
++
++	resched_task(highest_prio_rq->curr);
++}
++#else /* CONFIG_SMP */
++static inline int needs_other_cpu(struct task_struct *p, int cpu)
++{
++	return 0;
++}
++
++static void try_preempt(struct task_struct *p, struct rq *this_rq)
++{
++	if (p->policy == SCHED_IDLEPRIO)
++		return;
++	if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline,
++	    uprq->rq_policy))
++		resched_task(uprq->curr);
++}
++#endif /* CONFIG_SMP */
++
++/**
++ * task_oncpu_function_call - call a function on the cpu on which a task runs
++ * @p:		the task to evaluate
++ * @func:	the function to be called
++ * @info:	the function call argument
++ *
++ * Calls the function @func when the task is currently running. This might
++ * be on the current CPU, which just calls the function directly
++ */
++void task_oncpu_function_call(struct task_struct *p,
++			      void (*func) (void *info), void *info)
++{
++	int cpu;
++
++	preempt_disable();
++	cpu = task_cpu(p);
++	if (task_curr(p))
++		smp_call_function_single(cpu, func, info, 1);
++	preempt_enable();
++}
++
++static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
++				 bool is_sync)
++{
++	activate_task(p, rq);
++
++	/*
++	 * Sync wakeups (i.e. those types of wakeups where the waker
++	 * has indicated that it will leave the CPU in short order)
++	 * don't trigger a preemption if there are no idle cpus,
++	 * instead waiting for current to deschedule.
++	 */
++	if (!is_sync || suitable_idle_cpus(p))
++		try_preempt(p, rq);
++}
++
++static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
++					bool success)
++{
++	trace_sched_wakeup(p, success);
++	p->state = TASK_RUNNING;
++
++	/*
++	 * if a worker is waking up, notify workqueue. Note that on BFS, we
++	 * don't really know what cpu it will be, so we fake it for
++	 * wq_worker_waking_up :/
++	 */
++	if ((p->flags & PF_WQ_WORKER) && success)
++		wq_worker_waking_up(p, cpu_of(rq));
++}
++
++/***
++ * try_to_wake_up - wake up a thread
++ * @p: the thread to be awakened
++ * @state: the mask of task states that can be woken
++ * @wake_flags: wake modifier flags (WF_*)
++ *
++ * Put it on the run-queue if it's not already there. The "current"
++ * thread is always on the run-queue (except when the actual
++ * re-schedule is in progress), and as such you're allowed to do
++ * the simpler "current->state = TASK_RUNNING" to mark yourself
++ * runnable without the overhead of this.
++ *
++ * Returns %true if @p was woken up, %false if it was already running
++ * or @state didn't match @p's state.
++ */
++static int try_to_wake_up(struct task_struct *p, unsigned int state,
++			  int wake_flags)
++{
++	unsigned long flags;
++	int success = 0;
++	struct rq *rq;
++
++	get_cpu();
++
++	/* This barrier is undocumented, probably for p->state? くそ */
++	smp_wmb();
++
++	/*
++	 * No need to do time_lock_grq as we only need to update the rq clock
++	 * if we activate the task
++	 */
++	rq = task_grq_lock(p, &flags);
++
++	/* state is a volatile long, どうして、分からない */
++	if (!((unsigned int)p->state & state))
++		goto out_unlock;
++
++	if (task_queued(p) || task_running(p))
++		goto out_running;
++
++	ttwu_activate(p, rq, wake_flags & WF_SYNC);
++	success = true;
++
++out_running:
++	ttwu_post_activation(p, rq, success);
++out_unlock:
++	task_grq_unlock(&flags);
++	put_cpu();
++
++	return success;
++}
++
++/**
++ * try_to_wake_up_local - try to wake up a local task with grq lock held
++ * @p: the thread to be awakened
++ *
++ * Put @p on the run-queue if it's not already there.  The caller must
++ * ensure that grq is locked and, @p is not the current task.
++ * grq stays locked over invocation.
++ */
++static void try_to_wake_up_local(struct task_struct *p)
++{
++	struct rq *rq = task_rq(p);
++	bool success = false;
++
++	WARN_ON(rq != this_rq());
++	BUG_ON(p == current);
++	lockdep_assert_held(&grq.lock);
++
++	if (!(p->state & TASK_NORMAL))
++		return;
++
++	if (!task_queued(p)) {
++		if (likely(!task_running(p))) {
++			schedstat_inc(rq, ttwu_count);
++			schedstat_inc(rq, ttwu_local);
++		}
++		ttwu_activate(p, rq, false);
++		success = true;
++	}
++	ttwu_post_activation(p, rq, success);
++}
++
++/**
++ * wake_up_process - Wake up a specific process
++ * @p: The process to be woken up.
++ *
++ * Attempt to wake up the nominated process and move it to the set of runnable
++ * processes.  Returns 1 if the process was woken up, 0 if it was already
++ * running.
++ *
++ * It may be assumed that this function implies a write memory barrier before
++ * changing the task state if and only if any tasks are woken up.
++ */
++int wake_up_process(struct task_struct *p)
++{
++	return try_to_wake_up(p, TASK_ALL, 0);
++}
++EXPORT_SYMBOL(wake_up_process);
++
++int wake_up_state(struct task_struct *p, unsigned int state)
++{
++	return try_to_wake_up(p, state, 0);
++}
++
++static void time_slice_expired(struct task_struct *p);
++
++/*
++ * Perform scheduler related setup for a newly forked process p.
++ * p is forked by current.
++ */
++void sched_fork(struct task_struct *p, int clone_flags)
++{
++	struct task_struct *curr;
++	int cpu = get_cpu();
++	struct rq *rq;
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++	INIT_HLIST_HEAD(&p->preempt_notifiers);
++#endif
++	/*
++	 * We mark the process as running here. This guarantees that
++	 * nobody will actually run it, and a signal or other external
++	 * event cannot wake it up and insert it on the runqueue either.
++	 */
++	p->state = TASK_RUNNING;
++	set_task_cpu(p, cpu);
++
++	/* Should be reset in fork.c but done here for ease of bfs patching */
++	p->sched_time = p->stime_pc = p->utime_pc = 0;
++
++	/*
++	 * Revert to default priority/policy on fork if requested.
++	 */
++	if (unlikely(p->sched_reset_on_fork)) {
++		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
++			p->policy = SCHED_NORMAL;
++			p->normal_prio = normal_prio(p);
++		}
++
++		if (PRIO_TO_NICE(p->static_prio) < 0) {
++			p->static_prio = NICE_TO_PRIO(0);
++			p->normal_prio = p->static_prio;
++		}
++
++		/*
++		 * We don't need the reset flag anymore after the fork. It has
++		 * fulfilled its duty:
++		 */
++		p->sched_reset_on_fork = 0;
++	}
++
++	curr = current;
++	/*
++	 * Make sure we do not leak PI boosting priority to the child.
++	 */
++	p->prio = curr->normal_prio;
++
++	INIT_LIST_HEAD(&p->run_list);
++#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
++	if (unlikely(sched_info_on()))
++		memset(&p->sched_info, 0, sizeof(p->sched_info));
++#endif
++
++	p->oncpu = 0;
++
++#ifdef CONFIG_PREEMPT
++	/* Want to start with kernel preemption disabled. */
++	task_thread_info(p)->preempt_count = 1;
++#endif
++	if (unlikely(p->policy == SCHED_FIFO))
++		goto out;
++	/*
++	 * Share the timeslice between parent and child, thus the
++	 * total amount of pending timeslices in the system doesn't change,
++	 * resulting in more scheduling fairness. If it's negative, it won't
++	 * matter since that's the same as being 0. current's time_slice is
++	 * actually in rq_time_slice when it's running, as is its last_ran
++	 * value. rq->rq_deadline is only modified within schedule() so it
++	 * is always equal to current->deadline.
++	 */
++	rq = task_grq_lock_irq(curr);
++	if (likely(rq->rq_time_slice >= RESCHED_US * 2)) {
++		rq->rq_time_slice /= 2;
++		p->time_slice = rq->rq_time_slice;
++	} else {
++		/*
++		 * Forking task has run out of timeslice. Reschedule it and
++		 * start its child with a new time slice and deadline. The
++		 * child will end up running first because its deadline will
++		 * be slightly earlier.
++		 */
++		rq->rq_time_slice = 0;
++		set_tsk_need_resched(curr);
++		time_slice_expired(p);
++	}
++	p->last_ran = rq->rq_last_ran;
++	task_grq_unlock_irq();
++out:
++	put_cpu();
++}
++
++/*
++ * wake_up_new_task - wake up a newly created task for the first time.
++ *
++ * This function will do some initial scheduler statistics housekeeping
++ * that must be done for every newly created context, then puts the task
++ * on the runqueue and wakes it.
++ */
++void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
++{
++	struct task_struct *parent;
++	unsigned long flags;
++	struct rq *rq;
++
++	rq = task_grq_lock(p, &flags);
++	p->state = TASK_RUNNING;
++	parent = p->parent;
++	/* Unnecessary but small chance that the parent changed CPU */
++	set_task_cpu(p, task_cpu(parent));
++	activate_task(p, rq);
++	trace_sched_wakeup_new(p, 1);
++	if (!(clone_flags & CLONE_VM) && rq->curr == parent &&
++	    !suitable_idle_cpus(p)) {
++		/*
++		 * The VM isn't cloned, so we're in a good position to
++		 * do child-runs-first in anticipation of an exec. This
++		 * usually avoids a lot of COW overhead.
++		 */
++		resched_task(parent);
++	} else
++		try_preempt(p, rq);
++	task_grq_unlock(&flags);
++}
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++
++/**
++ * preempt_notifier_register - tell me when current is being preempted & rescheduled
++ * @notifier: notifier struct to register
++ */
++void preempt_notifier_register(struct preempt_notifier *notifier)
++{
++	hlist_add_head(&notifier->link, &current->preempt_notifiers);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_register);
++
++/**
++ * preempt_notifier_unregister - no longer interested in preemption notifications
++ * @notifier: notifier struct to unregister
++ *
++ * This is safe to call from within a preemption notifier.
++ */
++void preempt_notifier_unregister(struct preempt_notifier *notifier)
++{
++	hlist_del(&notifier->link);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
++
++static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++	struct preempt_notifier *notifier;
++	struct hlist_node *node;
++
++	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
++		notifier->ops->sched_in(notifier, raw_smp_processor_id());
++}
++
++static void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++	struct preempt_notifier *notifier;
++	struct hlist_node *node;
++
++	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
++		notifier->ops->sched_out(notifier, next);
++}
++
++#else /* !CONFIG_PREEMPT_NOTIFIERS */
++
++static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++}
++
++static void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++}
++
++#endif /* CONFIG_PREEMPT_NOTIFIERS */
++
++/**
++ * prepare_task_switch - prepare to switch tasks
++ * @rq: the runqueue preparing to switch
++ * @next: the task we are going to switch to.
++ *
++ * This is called with the rq lock held and interrupts off. It must
++ * be paired with a subsequent finish_task_switch after the context
++ * switch.
++ *
++ * prepare_task_switch sets up locking and calls architecture specific
++ * hooks.
++ */
++static inline void
++prepare_task_switch(struct rq *rq, struct task_struct *prev,
++		    struct task_struct *next)
++{
++	fire_sched_out_preempt_notifiers(prev, next);
++	prepare_lock_switch(rq, next);
++	prepare_arch_switch(next);
++}
++
++/**
++ * finish_task_switch - clean up after a task-switch
++ * @rq: runqueue associated with task-switch
++ * @prev: the thread we just switched away from.
++ *
++ * finish_task_switch must be called after the context switch, paired
++ * with a prepare_task_switch call before the context switch.
++ * finish_task_switch will reconcile locking set up by prepare_task_switch,
++ * and do any other architecture-specific cleanup actions.
++ *
++ * Note that we may have delayed dropping an mm in context_switch(). If
++ * so, we finish that here outside of the runqueue lock.  (Doing it
++ * with the lock held can cause deadlocks; see schedule() for
++ * details.)
++ */
++static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
++	__releases(grq.lock)
++{
++	struct mm_struct *mm = rq->prev_mm;
++	long prev_state;
++
++	rq->prev_mm = NULL;
++
++	/*
++	 * A task struct has one reference for the use as "current".
++	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
++	 * schedule one last time. The schedule call will never return, and
++	 * the scheduled task must drop that reference.
++	 * The test for TASK_DEAD must occur while the runqueue locks are
++	 * still held, otherwise prev could be scheduled on another cpu, die
++	 * there before we look at prev->state, and then the reference would
++	 * be dropped twice.
++	 *		Manfred Spraul <manfred@colorfullife.com>
++	 */
++	prev_state = prev->state;
++	finish_arch_switch(prev);
++#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
++	local_irq_disable();
++#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
++	perf_event_task_sched_in(current);
++#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
++	local_irq_enable();
++#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
++	finish_lock_switch(rq, prev);
++
++	fire_sched_in_preempt_notifiers(current);
++	if (mm)
++		mmdrop(mm);
++	if (unlikely(prev_state == TASK_DEAD)) {
++		/*
++		 * Remove function-return probe instances associated with this
++		 * task and put them back on the free list.
++		 */
++		kprobe_flush_task(prev);
++		put_task_struct(prev);
++	}
++}
++
++/**
++ * schedule_tail - first thing a freshly forked thread must call.
++ * @prev: the thread we just switched away from.
++ */
++asmlinkage void schedule_tail(struct task_struct *prev)
++	__releases(grq.lock)
++{
++	struct rq *rq = this_rq();
++
++	finish_task_switch(rq, prev);
++#ifdef __ARCH_WANT_UNLOCKED_CTXSW
++	/* In this case, finish_task_switch does not reenable preemption */
++	preempt_enable();
++#endif
++	if (current->set_child_tid)
++		put_user(current->pid, current->set_child_tid);
++}
++
++/*
++ * context_switch - switch to the new MM and the new
++ * thread's register state.
++ */
++static inline void
++context_switch(struct rq *rq, struct task_struct *prev,
++	       struct task_struct *next)
++{
++	struct mm_struct *mm, *oldmm;
++
++	prepare_task_switch(rq, prev, next);
++	trace_sched_switch(prev, next);
++	mm = next->mm;
++	oldmm = prev->active_mm;
++	/*
++	 * For paravirt, this is coupled with an exit in switch_to to
++	 * combine the page table reload and the switch backend into
++	 * one hypercall.
++	 */
++	arch_start_context_switch(prev);
++
++	if (!mm) {
++		next->active_mm = oldmm;
++		atomic_inc(&oldmm->mm_count);
++		enter_lazy_tlb(oldmm, next);
++	} else
++		switch_mm(oldmm, mm, next);
++
++	if (!prev->mm) {
++		prev->active_mm = NULL;
++		rq->prev_mm = oldmm;
++	}
++	/*
++	 * Since the runqueue lock will be released by the next
++	 * task (which is an invalid locking op but in the case
++	 * of the scheduler it's an obvious special-case), so we
++	 * do an early lockdep release here:
++	 */
++#ifndef __ARCH_WANT_UNLOCKED_CTXSW
++	spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
++#endif
++
++	/* Here we just switch the register state and the stack. */
++	switch_to(prev, next, prev);
++
++	barrier();
++	/*
++	 * this_rq must be evaluated again because prev may have moved
++	 * CPUs since it called schedule(), thus the 'rq' on its stack
++	 * frame will be invalid.
++	 */
++	finish_task_switch(this_rq(), prev);
++}
++
++/*
++ * nr_running, nr_uninterruptible and nr_context_switches:
++ *
++ * externally visible scheduler statistics: current number of runnable
++ * threads, current number of uninterruptible-sleeping threads, total
++ * number of context switches performed since bootup. All are measured
++ * without grabbing the grq lock but the occasional inaccurate result
++ * doesn't matter so long as it's positive.
++ */
++unsigned long nr_running(void)
++{
++	long nr = grq.nr_running;
++
++	if (unlikely(nr < 0))
++		nr = 0;
++	return (unsigned long)nr;
++}
++
++unsigned long nr_uninterruptible(void)
++{
++	long nu = grq.nr_uninterruptible;
++
++	if (unlikely(nu < 0))
++		nu = 0;
++	return nu;
++}
++
++unsigned long long nr_context_switches(void)
++{
++	long long ns = grq.nr_switches;
++
++	/* This is of course impossible */
++	if (unlikely(ns < 0))
++		ns = 1;
++	return (long long)ns;
++}
++
++unsigned long nr_iowait(void)
++{
++	unsigned long i, sum = 0;
++
++	for_each_possible_cpu(i)
++		sum += atomic_read(&cpu_rq(i)->nr_iowait);
++
++	return sum;
++}
++
++unsigned long nr_iowait_cpu(int cpu)
++{
++	struct rq *this = cpu_rq(cpu);
++	return atomic_read(&this->nr_iowait);
++}
++
++unsigned long nr_active(void)
++{
++	return nr_running() + nr_uninterruptible();
++}
++
++/* Beyond a task running on this CPU, load is equal everywhere on BFS */
++unsigned long this_cpu_load(void)
++{
++	return this_rq()->rq_running +
++		(queued_notrunning() + nr_uninterruptible()) /
++		(1 + num_online_cpus());
++}
++
++/* Variables and functions for calc_load */
++static unsigned long calc_load_update;
++unsigned long avenrun[3];
++EXPORT_SYMBOL(avenrun);
++
++/**
++ * get_avenrun - get the load average array
++ * @loads:	pointer to dest load array
++ * @offset:	offset to add
++ * @shift:	shift count to shift the result left
++ *
++ * These values are estimates at best, so no need for locking.
++ */
++void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
++{
++	loads[0] = (avenrun[0] + offset) << shift;
++	loads[1] = (avenrun[1] + offset) << shift;
++	loads[2] = (avenrun[2] + offset) << shift;
++}
++
++static unsigned long
++calc_load(unsigned long load, unsigned long exp, unsigned long active)
++{
++	load *= exp;
++	load += active * (FIXED_1 - exp);
++	return load >> FSHIFT;
++}
++
++/*
++ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
++ */
++void calc_global_load(unsigned long ticks)
++{
++	long active;
++
++	if (time_before(jiffies, calc_load_update))
++		return;
++	active = nr_active() * FIXED_1;
++
++	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
++	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
++	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
++
++	calc_load_update = jiffies + LOAD_FREQ;
++}
++
++DEFINE_PER_CPU(struct kernel_stat, kstat);
++
++EXPORT_PER_CPU_SYMBOL(kstat);
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++
++/*
++ * There are no locks covering percpu hardirq/softirq time.
++ * They are only modified in account_system_vtime, on corresponding CPU
++ * with interrupts disabled. So, writes are safe.
++ * They are read and saved off onto struct rq in update_rq_clock().
++ * This may result in other CPU reading this CPU's irq time and can
++ * race with irq/account_system_vtime on this CPU. We would either get old
++ * or new value with a side effect of accounting a slice of irq time to wrong
++ * task when irq is in progress while we read rq->clock. That is a worthy
++ * compromise in place of having locks on each irq in account_system_time.
++ */
++static DEFINE_PER_CPU(u64, cpu_hardirq_time);
++static DEFINE_PER_CPU(u64, cpu_softirq_time);
++
++static DEFINE_PER_CPU(u64, irq_start_time);
++static int sched_clock_irqtime;
++
++void enable_sched_clock_irqtime(void)
++{
++	sched_clock_irqtime = 1;
++}
++
++void disable_sched_clock_irqtime(void)
++{
++	sched_clock_irqtime = 0;
++}
++
++#ifndef CONFIG_64BIT
++static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
++
++static inline void irq_time_write_begin(void)
++{
++	__this_cpu_inc(irq_time_seq.sequence);
++	smp_wmb();
++}
++
++static inline void irq_time_write_end(void)
++{
++	smp_wmb();
++	__this_cpu_inc(irq_time_seq.sequence);
++}
++
++static inline u64 irq_time_read(int cpu)
++{
++	u64 irq_time;
++	unsigned seq;
++
++	do {
++		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
++		irq_time = per_cpu(cpu_softirq_time, cpu) +
++			   per_cpu(cpu_hardirq_time, cpu);
++	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
++
++	return irq_time;
++}
++#else /* CONFIG_64BIT */
++static inline void irq_time_write_begin(void)
++{
++}
++
++static inline void irq_time_write_end(void)
++{
++}
++
++static inline u64 irq_time_read(int cpu)
++{
++	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
++}
++#endif /* CONFIG_64BIT */
++
++/*
++ * Called before incrementing preempt_count on {soft,}irq_enter
++ * and before decrementing preempt_count on {soft,}irq_exit.
++ */
++void account_system_vtime(struct task_struct *curr)
++{
++	unsigned long flags;
++	s64 delta;
++	int cpu;
++
++	if (!sched_clock_irqtime)
++		return;
++
++	local_irq_save(flags);
++
++	cpu = smp_processor_id();
++	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
++	__this_cpu_add(irq_start_time, delta);
++
++	irq_time_write_begin();
++	/*
++	 * We do not account for softirq time from ksoftirqd here.
++	 * We want to continue accounting softirq time to ksoftirqd thread
++	 * in that case, so as not to confuse scheduler with a special task
++	 * that do not consume any time, but still wants to run.
++	 */
++	if (hardirq_count())
++		__this_cpu_add(cpu_hardirq_time, delta);
++	else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
++		__this_cpu_add(cpu_softirq_time, delta);
++
++	irq_time_write_end();
++	local_irq_restore(flags);
++}
++EXPORT_SYMBOL_GPL(account_system_vtime);
++
++static void update_rq_clock_task(struct rq *rq, s64 delta)
++{
++	s64 irq_delta;
++
++	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
++
++	/*
++	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
++	 * this case when a previous update_rq_clock() happened inside a
++	 * {soft,}irq region.
++	 *
++	 * When this happens, we stop ->clock_task and only update the
++	 * prev_irq_time stamp to account for the part that fit, so that a next
++	 * update will consume the rest. This ensures ->clock_task is
++	 * monotonic.
++	 *
++	 * It does however cause some slight miss-attribution of {soft,}irq
++	 * time, a more accurate solution would be to update the irq_time using
++	 * the current rq->clock timestamp, except that would require using
++	 * atomic ops.
++	 */
++	if (irq_delta > delta)
++		irq_delta = delta;
++
++	rq->prev_irq_time += irq_delta;
++	delta -= irq_delta;
++	rq->clock_task += delta;
++}
++
++#else /* CONFIG_IRQ_TIME_ACCOUNTING */
++
++static void update_rq_clock_task(struct rq *rq, s64 delta)
++{
++	rq->clock_task += delta;
++}
++
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++
++/*
++ * On each tick, see what percentage of that tick was attributed to each
++ * component and add the percentage to the _pc values. Once a _pc value has
++ * accumulated one tick's worth, account for that. This means the total
++ * percentage of load components will always be 100 per tick.
++ */
++static void pc_idle_time(struct rq *rq, unsigned long pc)
++{
++	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
++	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
++
++	if (atomic_read(&rq->nr_iowait) > 0) {
++		rq->iowait_pc += pc;
++		if (rq->iowait_pc >= 100) {
++			rq->iowait_pc %= 100;
++			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
++		}
++	} else {
++		rq->idle_pc += pc;
++		if (rq->idle_pc >= 100) {
++			rq->idle_pc %= 100;
++			cpustat->idle = cputime64_add(cpustat->idle, tmp);
++		}
++	}
++}
++
++static void
++pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset,
++	       unsigned long pc, unsigned long ns)
++{
++	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
++	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
++	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
++
++	p->stime_pc += pc;
++	if (p->stime_pc >= 100) {
++		p->stime_pc -= 100;
++		p->stime = cputime_add(p->stime, cputime_one_jiffy);
++		p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled);
++		account_group_system_time(p, cputime_one_jiffy);
++		acct_update_integrals(p);
++	}
++	p->sched_time += ns;
++
++	if (hardirq_count() - hardirq_offset) {
++		rq->irq_pc += pc;
++		if (rq->irq_pc >= 100) {
++			rq->irq_pc %= 100;
++			cpustat->irq = cputime64_add(cpustat->irq, tmp);
++		}
++	} else if (in_serving_softirq()) {
++		rq->softirq_pc += pc;
++		if (rq->softirq_pc >= 100) {
++			rq->softirq_pc %= 100;
++			cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
++		}
++	} else {
++		rq->system_pc += pc;
++		if (rq->system_pc >= 100) {
++			rq->system_pc %= 100;
++			cpustat->system = cputime64_add(cpustat->system, tmp);
++		}
++	}
++}
++
++static void pc_user_time(struct rq *rq, struct task_struct *p,
++			 unsigned long pc, unsigned long ns)
++{
++	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
++	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
++	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
++
++	p->utime_pc += pc;
++	if (p->utime_pc >= 100) {
++		p->utime_pc -= 100;
++		p->utime = cputime_add(p->utime, cputime_one_jiffy);
++		p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled);
++		account_group_user_time(p, cputime_one_jiffy);
++		acct_update_integrals(p);
++	}
++	p->sched_time += ns;
++
++	if (TASK_NICE(p) > 0 || idleprio_task(p)) {
++		rq->nice_pc += pc;
++		if (rq->nice_pc >= 100) {
++			rq->nice_pc %= 100;
++			cpustat->nice = cputime64_add(cpustat->nice, tmp);
++		}
++	} else {
++		rq->user_pc += pc;
++		if (rq->user_pc >= 100) {
++			rq->user_pc %= 100;
++			cpustat->user = cputime64_add(cpustat->user, tmp);
++		}
++	}
++}
++
++/* Convert nanoseconds to percentage of one tick. */
++#define NS_TO_PC(NS)	(NS * 100 / JIFFY_NS)
++
++/*
++ * This is called on clock ticks and on context switches.
++ * Bank in p->sched_time the ns elapsed since the last tick or switch.
++ * CPU scheduler quota accounting is also performed here in microseconds.
++ */
++static void
++update_cpu_clock(struct rq *rq, struct task_struct *p, int tick)
++{
++	long account_ns = rq->clock - rq->timekeep_clock;
++	struct task_struct *idle = rq->idle;
++	unsigned long account_pc;
++
++	if (unlikely(account_ns < 0))
++		account_ns = 0;
++
++	account_pc = NS_TO_PC(account_ns);
++
++	if (tick) {
++		int user_tick = user_mode(get_irq_regs());
++
++		/* Accurate tick timekeeping */
++		if (user_tick)
++			pc_user_time(rq, p, account_pc, account_ns);
++		else if (p != idle || (irq_count() != HARDIRQ_OFFSET))
++			pc_system_time(rq, p, HARDIRQ_OFFSET,
++				       account_pc, account_ns);
++		else
++			pc_idle_time(rq, account_pc);
++	} else {
++		/* Accurate subtick timekeeping */
++		if (p == idle)
++			pc_idle_time(rq, account_pc);
++		else
++			pc_user_time(rq, p, account_pc, account_ns);
++	}
++
++	/* time_slice accounting is done in usecs to avoid overflow on 32bit */
++	if (rq->rq_policy != SCHED_FIFO && p != idle) {
++		s64 time_diff = rq->clock - rq->rq_last_ran;
++
++		niffy_diff(&time_diff, 1);
++		rq->rq_time_slice -= NS_TO_US(time_diff);
++	}
++	rq->rq_last_ran = rq->timekeep_clock = rq->clock;
++}
++
++/*
++ * Return any ns on the sched_clock that have not yet been accounted in
++ * @p in case that task is currently running.
++ *
++ * Called with task_grq_lock() held.
++ */
++static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
++{
++	u64 ns = 0;
++
++	if (p == rq->curr) {
++		update_clocks(rq);
++		ns = rq->clock_task - rq->rq_last_ran;
++		if (unlikely((s64)ns < 0))
++			ns = 0;
++	}
++
++	return ns;
++}
++
++unsigned long long task_delta_exec(struct task_struct *p)
++{
++	unsigned long flags;
++	struct rq *rq;
++	u64 ns;
++
++	rq = task_grq_lock(p, &flags);
++	ns = do_task_delta_exec(p, rq);
++	task_grq_unlock(&flags);
++
++	return ns;
++}
++
++/*
++ * Return accounted runtime for the task.
++ * In case the task is currently running, return the runtime plus current's
++ * pending runtime that have not been accounted yet.
++ */
++unsigned long long task_sched_runtime(struct task_struct *p)
++{
++	unsigned long flags;
++	struct rq *rq;
++	u64 ns;
++
++	rq = task_grq_lock(p, &flags);
++	ns = p->sched_time + do_task_delta_exec(p, rq);
++	task_grq_unlock(&flags);
++
++	return ns;
++}
++
++/*
++ * Return sum_exec_runtime for the thread group.
++ * In case the task is currently running, return the sum plus current's
++ * pending runtime that have not been accounted yet.
++ *
++ * Note that the thread group might have other running tasks as well,
++ * so the return value not includes other pending runtime that other
++ * running tasks might have.
++ */
++unsigned long long thread_group_sched_runtime(struct task_struct *p)
++{
++	struct task_cputime totals;
++	unsigned long flags;
++	struct rq *rq;
++	u64 ns;
++
++	rq = task_grq_lock(p, &flags);
++	thread_group_cputime(p, &totals);
++	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
++	task_grq_unlock(&flags);
++
++	return ns;
++}
++
++/* Compatibility crap for removal */
++void account_user_time(struct task_struct *p, cputime_t cputime,
++		       cputime_t cputime_scaled)
++{
++}
++
++void account_idle_time(cputime_t cputime)
++{
++}
++
++/*
++ * Account guest cpu time to a process.
++ * @p: the process that the cpu time gets accounted to
++ * @cputime: the cpu time spent in virtual machine since the last update
++ * @cputime_scaled: cputime scaled by cpu frequency
++ */
++static void account_guest_time(struct task_struct *p, cputime_t cputime,
++			       cputime_t cputime_scaled)
++{
++	cputime64_t tmp;
++	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
++
++	tmp = cputime_to_cputime64(cputime);
++
++	/* Add guest time to process. */
++	p->utime = cputime_add(p->utime, cputime);
++	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
++	account_group_user_time(p, cputime);
++	p->gtime = cputime_add(p->gtime, cputime);
++
++	/* Add guest time to cpustat. */
++	if (TASK_NICE(p) > 0) {
++		cpustat->nice = cputime64_add(cpustat->nice, tmp);
++		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
++	} else {
++		cpustat->user = cputime64_add(cpustat->user, tmp);
++		cpustat->guest = cputime64_add(cpustat->guest, tmp);
++	}
++}
++
++/*
++ * Account system cpu time to a process.
++ * @p: the process that the cpu time gets accounted to
++ * @hardirq_offset: the offset to subtract from hardirq_count()
++ * @cputime: the cpu time spent in kernel space since the last update
++ * @cputime_scaled: cputime scaled by cpu frequency
++ * This is for guest only now.
++ */
++void account_system_time(struct task_struct *p, int hardirq_offset,
++			 cputime_t cputime, cputime_t cputime_scaled)
++{
++
++	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
++		account_guest_time(p, cputime, cputime_scaled);
++}
++
++/*
++ * Account for involuntary wait time.
++ * @steal: the cpu time spent in involuntary wait
++ */
++void account_steal_time(cputime_t cputime)
++{
++	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
++	cputime64_t cputime64 = cputime_to_cputime64(cputime);
++
++	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
++}
++
++/*
++ * Account for idle time.
++ * @cputime: the cpu time spent in idle wait
++ */
++static void account_idle_times(cputime_t cputime)
++{
++	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
++	cputime64_t cputime64 = cputime_to_cputime64(cputime);
++	struct rq *rq = this_rq();
++
++	if (atomic_read(&rq->nr_iowait) > 0)
++		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
++	else
++		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
++}
++
++#ifndef CONFIG_VIRT_CPU_ACCOUNTING
++
++void account_process_tick(struct task_struct *p, int user_tick)
++{
++}
++
++/*
++ * Account multiple ticks of steal time.
++ * @p: the process from which the cpu time has been stolen
++ * @ticks: number of stolen ticks
++ */
++void account_steal_ticks(unsigned long ticks)
++{
++	account_steal_time(jiffies_to_cputime(ticks));
++}
++
++/*
++ * Account multiple ticks of idle time.
++ * @ticks: number of stolen ticks
++ */
++void account_idle_ticks(unsigned long ticks)
++{
++	account_idle_times(jiffies_to_cputime(ticks));
++}
++#endif
++
++static inline void grq_iso_lock(void)
++	__acquires(grq.iso_lock)
++{
++	raw_spin_lock(&grq.iso_lock);
++}
++
++static inline void grq_iso_unlock(void)
++	__releases(grq.iso_lock)
++{
++	raw_spin_unlock(&grq.iso_lock);
++}
++
++/*
++ * Functions to test for when SCHED_ISO tasks have used their allocated
++ * quota as real time scheduling and convert them back to SCHED_NORMAL.
++ * Where possible, the data is tested lockless, to avoid grabbing iso_lock
++ * because the occasional inaccurate result won't matter. However the
++ * tick data is only ever modified under lock. iso_refractory is only simply
++ * set to 0 or 1 so it's not worth grabbing the lock yet again for that.
++ */
++static void set_iso_refractory(void)
++{
++	grq.iso_refractory = 1;
++}
++
++static void clear_iso_refractory(void)
++{
++	grq.iso_refractory = 0;
++}
++
++/*
++ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
++ * tasks and set the refractory flag if necessary. There is 10% hysteresis
++ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
++ * slow division.
++ */
++static unsigned int test_ret_isorefractory(struct rq *rq)
++{
++	if (likely(!grq.iso_refractory)) {
++		if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu)
++			set_iso_refractory();
++	} else {
++		if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128))
++			clear_iso_refractory();
++	}
++	return grq.iso_refractory;
++}
++
++static void iso_tick(void)
++{
++	grq_iso_lock();
++	grq.iso_ticks += 100;
++	grq_iso_unlock();
++}
++
++/* No SCHED_ISO task was running so decrease rq->iso_ticks */
++static inline void no_iso_tick(void)
++{
++	if (grq.iso_ticks) {
++		grq_iso_lock();
++		grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1;
++		if (unlikely(grq.iso_refractory && grq.iso_ticks <
++		    ISO_PERIOD * (sched_iso_cpu * 115 / 128)))
++			clear_iso_refractory();
++		grq_iso_unlock();
++	}
++}
++
++static int rq_running_iso(struct rq *rq)
++{
++	return rq->rq_prio == ISO_PRIO;
++}
++
++/* This manages tasks that have run out of timeslice during a scheduler_tick */
++static void task_running_tick(struct rq *rq)
++{
++	struct task_struct *p;
++
++	/*
++	 * If a SCHED_ISO task is running we increment the iso_ticks. In
++	 * order to prevent SCHED_ISO tasks from causing starvation in the
++	 * presence of true RT tasks we account those as iso_ticks as well.
++	 */
++	if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) {
++		if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100)
++			iso_tick();
++	} else
++		no_iso_tick();
++
++	if (iso_queue(rq)) {
++		if (unlikely(test_ret_isorefractory(rq))) {
++			if (rq_running_iso(rq)) {
++				/*
++				 * SCHED_ISO task is running as RT and limit
++				 * has been hit. Force it to reschedule as
++				 * SCHED_NORMAL by zeroing its time_slice
++				 */
++				rq->rq_time_slice = 0;
++			}
++		}
++	}
++
++	/* SCHED_FIFO tasks never run out of timeslice. */
++	if (rq->rq_policy == SCHED_FIFO)
++		return;
++	/*
++	 * Tasks that were scheduled in the first half of a tick are not
++	 * allowed to run into the 2nd half of the next tick if they will
++	 * run out of time slice in the interim. Otherwise, if they have
++	 * less than RESCHED_US μs of time slice left they will be rescheduled.
++	 */
++	if (rq->dither) {
++		if (rq->rq_time_slice > HALF_JIFFY_US)
++			return;
++		else
++			rq->rq_time_slice = 0;
++	} else if (rq->rq_time_slice >= RESCHED_US)
++			return;
++
++	/* p->time_slice < RESCHED_US. We only modify task_struct under grq lock */
++	p = rq->curr;
++	requeue_task(p);
++	grq_lock();
++	set_tsk_need_resched(p);
++	grq_unlock();
++}
++
++void wake_up_idle_cpu(int cpu);
++
++/*
++ * This function gets called by the timer code, with HZ frequency.
++ * We call it with interrupts disabled. The data modified is all
++ * local to struct rq so we don't need to grab grq lock.
++ */
++void scheduler_tick(void)
++{
++	int cpu __maybe_unused = smp_processor_id();
++	struct rq *rq = cpu_rq(cpu);
++
++	sched_clock_tick();
++	/* grq lock not grabbed, so only update rq clock */
++	update_rq_clock(rq);
++	update_cpu_clock(rq, rq->curr, 1);
++	if (!rq_idle(rq))
++		task_running_tick(rq);
++	else
++		no_iso_tick();
++	rq->last_tick = rq->clock;
++	perf_event_task_tick();
++}
++
++notrace unsigned long get_parent_ip(unsigned long addr)
++{
++	if (in_lock_functions(addr)) {
++		addr = CALLER_ADDR2;
++		if (in_lock_functions(addr))
++			addr = CALLER_ADDR3;
++	}
++	return addr;
++}
++
++#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
++				defined(CONFIG_PREEMPT_TRACER))
++void __kprobes add_preempt_count(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Underflow?
++	 */
++	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
++		return;
++#endif
++	preempt_count() += val;
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Spinlock count overflowing soon?
++	 */
++	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
++				PREEMPT_MASK - 10);
++#endif
++	if (preempt_count() == val)
++		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
++}
++EXPORT_SYMBOL(add_preempt_count);
++
++void __kprobes sub_preempt_count(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Underflow?
++	 */
++	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
++		return;
++	/*
++	 * Is the spinlock portion underflowing?
++	 */
++	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
++			!(preempt_count() & PREEMPT_MASK)))
++		return;
++#endif
++
++	if (preempt_count() == val)
++		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
++	preempt_count() -= val;
++}
++EXPORT_SYMBOL(sub_preempt_count);
++#endif
++
++/*
++ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
++ * is the key to everything. It distributes cpu fairly amongst tasks of the
++ * same nice value, it proportions cpu according to nice level, it means the
++ * task that last woke up the longest ago has the earliest deadline, thus
++ * ensuring that interactive tasks get low latency on wake up. The CPU
++ * proportion works out to the square of the virtual deadline difference, so
++ * this equation will give nice 19 3% CPU compared to nice 0.
++ */
++static inline u64 prio_deadline_diff(int user_prio)
++{
++	return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
++}
++
++static inline u64 task_deadline_diff(struct task_struct *p)
++{
++	return prio_deadline_diff(TASK_USER_PRIO(p));
++}
++
++static inline u64 static_deadline_diff(int static_prio)
++{
++	return prio_deadline_diff(USER_PRIO(static_prio));
++}
++
++static inline int ms_longest_deadline_diff(void)
++{
++	return NS_TO_MS(prio_deadline_diff(39));
++}
++
++/*
++ * The time_slice is only refilled when it is empty and that is when we set a
++ * new deadline.
++ */
++static void time_slice_expired(struct task_struct *p)
++{
++	p->time_slice = timeslice();
++	p->deadline = grq.niffies + task_deadline_diff(p);
++}
++
++/*
++ * Timeslices below RESCHED_US are considered as good as expired as there's no
++ * point rescheduling when there's so little time left. SCHED_BATCH tasks
++ * have been flagged be not latency sensitive and likely to be fully CPU
++ * bound so every time they're rescheduled they have their time_slice
++ * refilled, but get a new later deadline to have little effect on
++ * SCHED_NORMAL tasks.
++
++ */
++static inline void check_deadline(struct task_struct *p)
++{
++	if (p->time_slice < RESCHED_US || batch_task(p))
++		time_slice_expired(p);
++}
++
++/*
++ * O(n) lookup of all tasks in the global runqueue. The real brainfuck
++ * of lock contention and O(n). It's not really O(n) as only the queued,
++ * but not running tasks are scanned, and is O(n) queued in the worst case
++ * scenario only because the right task can be found before scanning all of
++ * them.
++ * Tasks are selected in this order:
++ * Real time tasks are selected purely by their static priority and in the
++ * order they were queued, so the lowest value idx, and the first queued task
++ * of that priority value is chosen.
++ * If no real time tasks are found, the SCHED_ISO priority is checked, and
++ * all SCHED_ISO tasks have the same priority value, so they're selected by
++ * the earliest deadline value.
++ * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the
++ * earliest deadline.
++ * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are
++ * selected by the earliest deadline.
++ */
++static inline struct
++task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle)
++{
++	u64 dl, earliest_deadline = 0; /* Initialise to silence compiler */
++	struct task_struct *p, *edt = idle;
++	unsigned int cpu = cpu_of(rq);
++	struct list_head *queue;
++	int idx = 0;
++
++retry:
++	idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx);
++	if (idx >= PRIO_LIMIT)
++		goto out;
++	queue = grq.queue + idx;
++	list_for_each_entry(p, queue, run_list) {
++		/* Make sure cpu affinity is ok */
++		if (needs_other_cpu(p, cpu))
++			continue;
++		if (idx < MAX_RT_PRIO) {
++			/* We found an rt task */
++			edt = p;
++			goto out_take;
++		}
++
++		dl = p->deadline + cache_distance(task_rq(p), rq, p);
++
++		/*
++		 * No rt tasks. Find the earliest deadline task. Now we're in
++		 * O(n) territory. This is what we silenced the compiler for:
++		 * edt will always start as idle.
++		 */
++		if (edt == idle ||
++		    deadline_before(dl, earliest_deadline)) {
++			earliest_deadline = dl;
++			edt = p;
++		}
++	}
++	if (edt == idle) {
++		if (++idx < PRIO_LIMIT)
++			goto retry;
++		goto out;
++	}
++out_take:
++	take_task(rq, edt);
++out:
++	return edt;
++}
++
++/*
++ * Print scheduling while atomic bug:
++ */
++static noinline void __schedule_bug(struct task_struct *prev)
++{
++	struct pt_regs *regs = get_irq_regs();
++
++	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
++		prev->comm, prev->pid, preempt_count());
++
++	debug_show_held_locks(prev);
++	print_modules();
++	if (irqs_disabled())
++		print_irqtrace_events(prev);
++
++	if (regs)
++		show_regs(regs);
++	else
++		dump_stack();
++}
++
++/*
++ * Various schedule()-time debugging checks and statistics:
++ */
++static inline void schedule_debug(struct task_struct *prev)
++{
++	/*
++	 * Test if we are atomic. Since do_exit() needs to call into
++	 * schedule() atomically, we ignore that path for now.
++	 * Otherwise, whine if we are scheduling when we should not be.
++	 */
++	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
++		__schedule_bug(prev);
++
++	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
++
++	schedstat_inc(this_rq(), sched_count);
++#ifdef CONFIG_SCHEDSTATS
++	if (unlikely(prev->lock_depth >= 0)) {
++		schedstat_inc(this_rq(), bkl_count);
++		schedstat_inc(prev, sched_info.bkl_count);
++	}
++#endif
++}
++
++/*
++ * The currently running task's information is all stored in rq local data
++ * which is only modified by the local CPU, thereby allowing the data to be
++ * changed without grabbing the grq lock.
++ */
++static inline void set_rq_task(struct rq *rq, struct task_struct *p)
++{
++	rq->rq_time_slice = p->time_slice;
++	rq->rq_deadline = p->deadline;
++	rq->rq_last_ran = p->last_ran;
++	rq->rq_policy = p->policy;
++	rq->rq_prio = p->prio;
++	if (p != rq->idle)
++		rq->rq_running = 1;
++	else
++		rq->rq_running = 0;
++}
++
++static void reset_rq_task(struct rq *rq, struct task_struct *p)
++{
++	rq->rq_policy = p->policy;
++	rq->rq_prio = p->prio;
++}
++
++/*
++ * schedule() is the main scheduler function.
++ */
++asmlinkage void __sched schedule(void)
++{
++	struct task_struct *prev, *next, *idle;
++	unsigned long *switch_count;
++	int deactivate, cpu;
++	struct rq *rq;
++
++need_resched:
++	preempt_disable();
++
++	cpu = smp_processor_id();
++	rq = cpu_rq(cpu);
++	idle = rq->idle;
++	rcu_note_context_switch(cpu);
++	prev = rq->curr;
++
++	release_kernel_lock(prev);
++need_resched_nonpreemptible:
++
++	deactivate = 0;
++	schedule_debug(prev);
++
++	grq_lock_irq();
++	update_clocks(rq);
++	update_cpu_clock(rq, prev, 0);
++	if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
++		rq->dither = 0;
++	else
++		rq->dither = 1;
++
++	clear_tsk_need_resched(prev);
++
++	switch_count = &prev->nivcsw;
++	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
++		if (unlikely(signal_pending_state(prev->state, prev))) {
++			prev->state = TASK_RUNNING;
++		} else {
++			deactivate = 1;
++			/*
++			 * If a worker is going to sleep, notify and
++			 * ask workqueue whether it wants to wake up a
++			 * task to maintain concurrency.  If so, wake
++			 * up the task.
++			 */
++			if (prev->flags & PF_WQ_WORKER) {
++				struct task_struct *to_wakeup;
++
++				to_wakeup = wq_worker_sleeping(prev, cpu);
++				if (to_wakeup) {
++					/* This shouldn't happen, but does */
++					if (unlikely(to_wakeup == prev))
++						deactivate = 0;
++					else
++						try_to_wake_up_local(to_wakeup);
++				}
++			}
++		}
++		switch_count = &prev->nvcsw;
++	}
++
++	if (prev != idle) {
++		/* Update all the information stored on struct rq */
++		prev->time_slice = rq->rq_time_slice;
++		prev->deadline = rq->rq_deadline;
++		check_deadline(prev);
++		prev->last_ran = rq->clock;
++
++		/* Task changed affinity off this CPU */
++		if (needs_other_cpu(prev, cpu))
++			resched_suitable_idle(prev);
++		else if (!deactivate) {
++			if (!queued_notrunning()) {
++				/*
++				* We now know prev is the only thing that is
++				* awaiting CPU so we can bypass rechecking for
++				* the earliest deadline task and just run it
++				* again.
++				*/
++				grq_unlock_irq();
++				goto rerun_prev_unlocked;
++			} else {
++				/*
++				 * If prev got kicked off by a task that has to
++				 * run on this CPU for affinity reasons then
++				 * there may be an idle CPU it can go to.
++				 */
++				resched_suitable_idle(prev);
++			}
++		}
++		return_task(prev, deactivate);
++	}
++
++	if (unlikely(!queued_notrunning())) {
++		/*
++		 * This CPU is now truly idle as opposed to when idle is
++		 * scheduled as a high priority task in its own right.
++		 */
++		next = idle;
++		schedstat_inc(rq, sched_goidle);
++		set_cpuidle_map(cpu);
++	} else {
++		next = earliest_deadline_task(rq, idle);
++		prefetch(next);
++		prefetch_stack(next);
++		clear_cpuidle_map(cpu);
++	}
++
++	if (likely(prev != next)) {
++		sched_info_switch(prev, next);
++		perf_event_task_sched_out(prev, next);
++
++		set_rq_task(rq, next);
++		grq.nr_switches++;
++		prev->oncpu = 0;
++		next->oncpu = 1;
++		rq->curr = next;
++		++*switch_count;
++
++		context_switch(rq, prev, next); /* unlocks the grq */
++		/*
++		 * The context switch have flipped the stack from under us
++		 * and restored the local variables which were saved when
++		 * this task called schedule() in the past. prev == current
++		 * is still correct, but it can be moved to another cpu/rq.
++		 */
++		cpu = smp_processor_id();
++		rq = cpu_rq(cpu);
++		idle = rq->idle;
++	} else
++		grq_unlock_irq();
++
++rerun_prev_unlocked:
++	if (unlikely(reacquire_kernel_lock(prev)))
++		goto need_resched_nonpreemptible;
++
++	preempt_enable_no_resched();
++	if (need_resched())
++		goto need_resched;
++}
++EXPORT_SYMBOL(schedule);
++
++#ifdef CONFIG_SMP
++int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
++{
++	unsigned int cpu;
++	struct rq *rq;
++
++#ifdef CONFIG_DEBUG_PAGEALLOC
++	/*
++	 * Need to access the cpu field knowing that
++	 * DEBUG_PAGEALLOC could have unmapped it if
++	 * the mutex owner just released it and exited.
++	 */
++	if (probe_kernel_address(&owner->cpu, cpu))
++		return 0;
++#else
++	cpu = owner->cpu;
++#endif
++
++	/*
++	 * Even if the access succeeded (likely case),
++	 * the cpu field may no longer be valid.
++	 */
++	if (cpu >= nr_cpumask_bits)
++		return 0;
++
++	/*
++	 * We need to validate that we can do a
++	 * get_cpu() and that we have the percpu area.
++	 */
++	if (!cpu_online(cpu))
++		return 0;
++
++	rq = cpu_rq(cpu);
++
++	for (;;) {
++		/*
++		 * Owner changed, break to re-assess state.
++		 */
++		if (lock->owner != owner)
++			break;
++
++		/*
++		 * Is that owner really running on that cpu?
++		 */
++		if (task_thread_info(rq->curr) != owner || need_resched())
++			return 0;
++
++		cpu_relax();
++	}
++
++	return 1;
++}
++#endif
++
++#ifdef CONFIG_PREEMPT
++/*
++ * this is the entry point to schedule() from in-kernel preemption
++ * off of preempt_enable. Kernel preemptions off return from interrupt
++ * occur there and call schedule directly.
++ */
++asmlinkage void __sched notrace preempt_schedule(void)
++{
++	struct thread_info *ti = current_thread_info();
++
++	/*
++	 * If there is a non-zero preempt_count or interrupts are disabled,
++	 * we do not want to preempt the current task. Just return..
++	 */
++	if (likely(ti->preempt_count || irqs_disabled()))
++		return;
++
++	do {
++		add_preempt_count_notrace(PREEMPT_ACTIVE);
++		schedule();
++		sub_preempt_count_notrace(PREEMPT_ACTIVE);
++
++		/*
++		 * Check again in case we missed a preemption opportunity
++		 * between schedule and now.
++		 */
++		barrier();
++	} while (need_resched());
++}
++EXPORT_SYMBOL(preempt_schedule);
++
++/*
++ * this is the entry point to schedule() from kernel preemption
++ * off of irq context.
++ * Note, that this is called and return with irqs disabled. This will
++ * protect us against recursive calling from irq.
++ */
++asmlinkage void __sched preempt_schedule_irq(void)
++{
++	struct thread_info *ti = current_thread_info();
++
++	/* Catch callers which need to be fixed */
++	BUG_ON(ti->preempt_count || !irqs_disabled());
++
++	do {
++		add_preempt_count(PREEMPT_ACTIVE);
++		local_irq_enable();
++		schedule();
++		local_irq_disable();
++		sub_preempt_count(PREEMPT_ACTIVE);
++
++		/*
++		 * Check again in case we missed a preemption opportunity
++		 * between schedule and now.
++		 */
++		barrier();
++	} while (need_resched());
++}
++
++#endif /* CONFIG_PREEMPT */
++
++int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
++			  void *key)
++{
++	return try_to_wake_up(curr->private, mode, wake_flags);
++}
++EXPORT_SYMBOL(default_wake_function);
++
++/*
++ * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
++ * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
++ * number) then we wake all the non-exclusive tasks and one exclusive task.
++ *
++ * There are circumstances in which we can try to wake a task which has already
++ * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
++ * zero in this (rare) case, and we handle it by continuing to scan the queue.
++ */
++static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
++			int nr_exclusive, int wake_flags, void *key)
++{
++	struct list_head *tmp, *next;
++
++	list_for_each_safe(tmp, next, &q->task_list) {
++		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
++		unsigned int flags = curr->flags;
++
++		if (curr->func(curr, mode, wake_flags, key) &&
++				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
++			break;
++	}
++}
++
++/**
++ * __wake_up - wake up threads blocked on a waitqueue.
++ * @q: the waitqueue
++ * @mode: which threads
++ * @nr_exclusive: how many wake-one or wake-many threads to wake up
++ * @key: is directly passed to the wakeup function
++ *
++ * It may be assumed that this function implies a write memory barrier before
++ * changing the task state if and only if any tasks are woken up.
++ */
++void __wake_up(wait_queue_head_t *q, unsigned int mode,
++			int nr_exclusive, void *key)
++{
++	unsigned long flags;
++
++	spin_lock_irqsave(&q->lock, flags);
++	__wake_up_common(q, mode, nr_exclusive, 0, key);
++	spin_unlock_irqrestore(&q->lock, flags);
++}
++EXPORT_SYMBOL(__wake_up);
++
++/*
++ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
++ */
++void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
++{
++	__wake_up_common(q, mode, 1, 0, NULL);
++}
++EXPORT_SYMBOL_GPL(__wake_up_locked);
++
++void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
++{
++	__wake_up_common(q, mode, 1, 0, key);
++}
++
++/**
++ * __wake_up_sync_key - wake up threads blocked on a waitqueue.
++ * @q: the waitqueue
++ * @mode: which threads
++ * @nr_exclusive: how many wake-one or wake-many threads to wake up
++ * @key: opaque value to be passed to wakeup targets
++ *
++ * The sync wakeup differs that the waker knows that it will schedule
++ * away soon, so while the target thread will be woken up, it will not
++ * be migrated to another CPU - ie. the two threads are 'synchronised'
++ * with each other. This can prevent needless bouncing between CPUs.
++ *
++ * On UP it can prevent extra preemption.
++ *
++ * It may be assumed that this function implies a write memory barrier before
++ * changing the task state if and only if any tasks are woken up.
++ */
++void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
++			int nr_exclusive, void *key)
++{
++	unsigned long flags;
++	int wake_flags = WF_SYNC;
++
++	if (unlikely(!q))
++		return;
++
++	if (unlikely(!nr_exclusive))
++		wake_flags = 0;
++
++	spin_lock_irqsave(&q->lock, flags);
++	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
++	spin_unlock_irqrestore(&q->lock, flags);
++}
++EXPORT_SYMBOL_GPL(__wake_up_sync_key);
++
++/**
++ * __wake_up_sync - wake up threads blocked on a waitqueue.
++ * @q: the waitqueue
++ * @mode: which threads
++ * @nr_exclusive: how many wake-one or wake-many threads to wake up
++ *
++ * The sync wakeup differs that the waker knows that it will schedule
++ * away soon, so while the target thread will be woken up, it will not
++ * be migrated to another CPU - ie. the two threads are 'synchronised'
++ * with each other. This can prevent needless bouncing between CPUs.
++ *
++ * On UP it can prevent extra preemption.
++ */
++void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
++{
++	unsigned long flags;
++	int sync = 1;
++
++	if (unlikely(!q))
++		return;
++
++	if (unlikely(!nr_exclusive))
++		sync = 0;
++
++	spin_lock_irqsave(&q->lock, flags);
++	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
++	spin_unlock_irqrestore(&q->lock, flags);
++}
++EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
++
++/**
++ * complete: - signals a single thread waiting on this completion
++ * @x:  holds the state of this particular completion
++ *
++ * This will wake up a single thread waiting on this completion. Threads will be
++ * awakened in the same order in which they were queued.
++ *
++ * See also complete_all(), wait_for_completion() and related routines.
++ *
++ * It may be assumed that this function implies a write memory barrier before
++ * changing the task state if and only if any tasks are woken up.
++ */
++void complete(struct completion *x)
++{
++	unsigned long flags;
++
++	spin_lock_irqsave(&x->wait.lock, flags);
++	x->done++;
++	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
++	spin_unlock_irqrestore(&x->wait.lock, flags);
++}
++EXPORT_SYMBOL(complete);
++
++/**
++ * complete_all: - signals all threads waiting on this completion
++ * @x:  holds the state of this particular completion
++ *
++ * This will wake up all threads waiting on this particular completion event.
++ *
++ * It may be assumed that this function implies a write memory barrier before
++ * changing the task state if and only if any tasks are woken up.
++ */
++void complete_all(struct completion *x)
++{
++	unsigned long flags;
++
++	spin_lock_irqsave(&x->wait.lock, flags);
++	x->done += UINT_MAX/2;
++	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
++	spin_unlock_irqrestore(&x->wait.lock, flags);
++}
++EXPORT_SYMBOL(complete_all);
++
++static inline long __sched
++do_wait_for_common(struct completion *x, long timeout, int state)
++{
++	if (!x->done) {
++		DECLARE_WAITQUEUE(wait, current);
++
++		__add_wait_queue_tail_exclusive(&x->wait, &wait);
++		do {
++			if (signal_pending_state(state, current)) {
++				timeout = -ERESTARTSYS;
++				break;
++			}
++			__set_current_state(state);
++			spin_unlock_irq(&x->wait.lock);
++			timeout = schedule_timeout(timeout);
++			spin_lock_irq(&x->wait.lock);
++		} while (!x->done && timeout);
++		__remove_wait_queue(&x->wait, &wait);
++		if (!x->done)
++			return timeout;
++	}
++	x->done--;
++	return timeout ?: 1;
++}
++
++static long __sched
++wait_for_common(struct completion *x, long timeout, int state)
++{
++	might_sleep();
++
++	spin_lock_irq(&x->wait.lock);
++	timeout = do_wait_for_common(x, timeout, state);
++	spin_unlock_irq(&x->wait.lock);
++	return timeout;
++}
++
++/**
++ * wait_for_completion: - waits for completion of a task
++ * @x:  holds the state of this particular completion
++ *
++ * This waits to be signaled for completion of a specific task. It is NOT
++ * interruptible and there is no timeout.
++ *
++ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
++ * and interrupt capability. Also see complete().
++ */
++void __sched wait_for_completion(struct completion *x)
++{
++	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
++}
++EXPORT_SYMBOL(wait_for_completion);
++
++/**
++ * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
++ * @x:  holds the state of this particular completion
++ * @timeout:  timeout value in jiffies
++ *
++ * This waits for either a completion of a specific task to be signaled or for a
++ * specified timeout to expire. The timeout is in jiffies. It is not
++ * interruptible.
++ */
++unsigned long __sched
++wait_for_completion_timeout(struct completion *x, unsigned long timeout)
++{
++	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
++}
++EXPORT_SYMBOL(wait_for_completion_timeout);
++
++/**
++ * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
++ * @x:  holds the state of this particular completion
++ *
++ * This waits for completion of a specific task to be signaled. It is
++ * interruptible.
++ */
++int __sched wait_for_completion_interruptible(struct completion *x)
++{
++	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
++	if (t == -ERESTARTSYS)
++		return t;
++	return 0;
++}
++EXPORT_SYMBOL(wait_for_completion_interruptible);
++
++/**
++ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
++ * @x:  holds the state of this particular completion
++ * @timeout:  timeout value in jiffies
++ *
++ * This waits for either a completion of a specific task to be signaled or for a
++ * specified timeout to expire. It is interruptible. The timeout is in jiffies.
++ */
++unsigned long __sched
++wait_for_completion_interruptible_timeout(struct completion *x,
++					  unsigned long timeout)
++{
++	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
++}
++EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
++
++/**
++ * wait_for_completion_killable: - waits for completion of a task (killable)
++ * @x:  holds the state of this particular completion
++ *
++ * This waits to be signaled for completion of a specific task. It can be
++ * interrupted by a kill signal.
++ */
++int __sched wait_for_completion_killable(struct completion *x)
++{
++	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
++	if (t == -ERESTARTSYS)
++		return t;
++	return 0;
++}
++EXPORT_SYMBOL(wait_for_completion_killable);
++
++/**
++ * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
++ * @x:  holds the state of this particular completion
++ * @timeout:  timeout value in jiffies
++ *
++ * This waits for either a completion of a specific task to be
++ * signaled or for a specified timeout to expire. It can be
++ * interrupted by a kill signal. The timeout is in jiffies.
++ */
++unsigned long __sched
++wait_for_completion_killable_timeout(struct completion *x,
++				     unsigned long timeout)
++{
++	return wait_for_common(x, timeout, TASK_KILLABLE);
++}
++EXPORT_SYMBOL(wait_for_completion_killable_timeout);
++
++/**
++ *	try_wait_for_completion - try to decrement a completion without blocking
++ *	@x:	completion structure
++ *
++ *	Returns: 0 if a decrement cannot be done without blocking
++ *		 1 if a decrement succeeded.
++ *
++ *	If a completion is being used as a counting completion,
++ *	attempt to decrement the counter without blocking. This
++ *	enables us to avoid waiting if the resource the completion
++ *	is protecting is not available.
++ */
++bool try_wait_for_completion(struct completion *x)
++{
++	unsigned long flags;
++	int ret = 1;
++
++	spin_lock_irqsave(&x->wait.lock, flags);
++	if (!x->done)
++		ret = 0;
++	else
++		x->done--;
++	spin_unlock_irqrestore(&x->wait.lock, flags);
++	return ret;
++}
++EXPORT_SYMBOL(try_wait_for_completion);
++
++/**
++ *	completion_done - Test to see if a completion has any waiters
++ *	@x:	completion structure
++ *
++ *	Returns: 0 if there are waiters (wait_for_completion() in progress)
++ *		 1 if there are no waiters.
++ *
++ */
++bool completion_done(struct completion *x)
++{
++	unsigned long flags;
++	int ret = 1;
++
++	spin_lock_irqsave(&x->wait.lock, flags);
++	if (!x->done)
++		ret = 0;
++	spin_unlock_irqrestore(&x->wait.lock, flags);
++	return ret;
++}
++EXPORT_SYMBOL(completion_done);
++
++static long __sched
++sleep_on_common(wait_queue_head_t *q, int state, long timeout)
++{
++	unsigned long flags;
++	wait_queue_t wait;
++
++	init_waitqueue_entry(&wait, current);
++
++	__set_current_state(state);
++
++	spin_lock_irqsave(&q->lock, flags);
++	__add_wait_queue(q, &wait);
++	spin_unlock(&q->lock);
++	timeout = schedule_timeout(timeout);
++	spin_lock_irq(&q->lock);
++	__remove_wait_queue(q, &wait);
++	spin_unlock_irqrestore(&q->lock, flags);
++
++	return timeout;
++}
++
++void __sched interruptible_sleep_on(wait_queue_head_t *q)
++{
++	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
++}
++EXPORT_SYMBOL(interruptible_sleep_on);
++
++long __sched
++interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
++{
++	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
++}
++EXPORT_SYMBOL(interruptible_sleep_on_timeout);
++
++void __sched sleep_on(wait_queue_head_t *q)
++{
++	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
++}
++EXPORT_SYMBOL(sleep_on);
++
++long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
++{
++	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
++}
++EXPORT_SYMBOL(sleep_on_timeout);
++
++#ifdef CONFIG_RT_MUTEXES
++
++/*
++ * rt_mutex_setprio - set the current priority of a task
++ * @p: task
++ * @prio: prio value (kernel-internal form)
++ *
++ * This function changes the 'effective' priority of a task. It does
++ * not touch ->normal_prio like __setscheduler().
++ *
++ * Used by the rt_mutex code to implement priority inheritance logic.
++ */
++void rt_mutex_setprio(struct task_struct *p, int prio)
++{
++	unsigned long flags;
++	int queued, oldprio;
++	struct rq *rq;
++
++	BUG_ON(prio < 0 || prio > MAX_PRIO);
++
++	rq = task_grq_lock(p, &flags);
++
++	trace_sched_pi_setprio(p, prio);
++	oldprio = p->prio;
++	queued = task_queued(p);
++	if (queued)
++		dequeue_task(p);
++	p->prio = prio;
++	if (task_running(p) && prio > oldprio)
++		resched_task(p);
++	if (queued) {
++		enqueue_task(p);
++		try_preempt(p, rq);
++	}
++
++	task_grq_unlock(&flags);
++}
++
++#endif
++
++/*
++ * Adjust the deadline for when the priority is to change, before it's
++ * changed.
++ */
++static inline void adjust_deadline(struct task_struct *p, int new_prio)
++{
++	p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
++}
++
++void set_user_nice(struct task_struct *p, long nice)
++{
++	int queued, new_static, old_static;
++	unsigned long flags;
++	struct rq *rq;
++
++	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
++		return;
++	new_static = NICE_TO_PRIO(nice);
++	/*
++	 * We have to be careful, if called from sys_setpriority(),
++	 * the task might be in the middle of scheduling on another CPU.
++	 */
++	rq = time_task_grq_lock(p, &flags);
++	/*
++	 * The RT priorities are set via sched_setscheduler(), but we still
++	 * allow the 'normal' nice value to be set - but as expected
++	 * it wont have any effect on scheduling until the task is
++	 * not SCHED_NORMAL/SCHED_BATCH:
++	 */
++	if (has_rt_policy(p)) {
++		p->static_prio = new_static;
++		goto out_unlock;
++	}
++	queued = task_queued(p);
++	if (queued)
++		dequeue_task(p);
++
++	adjust_deadline(p, new_static);
++	old_static = p->static_prio;
++	p->static_prio = new_static;
++	p->prio = effective_prio(p);
++
++	if (queued) {
++		enqueue_task(p);
++		if (new_static < old_static)
++			try_preempt(p, rq);
++	} else if (task_running(p)) {
++		reset_rq_task(rq, p);
++		if (old_static < new_static)
++			resched_task(p);
++	}
++out_unlock:
++	task_grq_unlock(&flags);
++}
++EXPORT_SYMBOL(set_user_nice);
++
++/*
++ * can_nice - check if a task can reduce its nice value
++ * @p: task
++ * @nice: nice value
++ */
++int can_nice(const struct task_struct *p, const int nice)
++{
++	/* convert nice value [19,-20] to rlimit style value [1,40] */
++	int nice_rlim = 20 - nice;
++
++	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
++		capable(CAP_SYS_NICE));
++}
++
++#ifdef __ARCH_WANT_SYS_NICE
++
++/*
++ * sys_nice - change the priority of the current process.
++ * @increment: priority increment
++ *
++ * sys_setpriority is a more generic, but much slower function that
++ * does similar things.
++ */
++SYSCALL_DEFINE1(nice, int, increment)
++{
++	long nice, retval;
++
++	/*
++	 * Setpriority might change our priority at the same moment.
++	 * We don't have to worry. Conceptually one call occurs first
++	 * and we have a single winner.
++	 */
++	if (increment < -40)
++		increment = -40;
++	if (increment > 40)
++		increment = 40;
++
++	nice = TASK_NICE(current) + increment;
++	if (nice < -20)
++		nice = -20;
++	if (nice > 19)
++		nice = 19;
++
++	if (increment < 0 && !can_nice(current, nice))
++		return -EPERM;
++
++	retval = security_task_setnice(current, nice);
++	if (retval)
++		return retval;
++
++	set_user_nice(current, nice);
++	return 0;
++}
++
++#endif
++
++/**
++ * task_prio - return the priority value of a given task.
++ * @p: the task in question.
++ *
++ * This is the priority value as seen by users in /proc.
++ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
++ * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO).
++ */
++int task_prio(const struct task_struct *p)
++{
++	int delta, prio = p->prio - MAX_RT_PRIO;
++
++	/* rt tasks and iso tasks */
++	if (prio <= 0)
++		goto out;
++
++	/* Convert to ms to avoid overflows */
++	delta = NS_TO_MS(p->deadline - grq.niffies);
++	delta = delta * 40 / ms_longest_deadline_diff();
++	if (delta > 0 && delta <= 80)
++		prio += delta;
++	if (idleprio_task(p))
++		prio += 40;
++out:
++	return prio;
++}
++
++/**
++ * task_nice - return the nice value of a given task.
++ * @p: the task in question.
++ */
++int task_nice(const struct task_struct *p)
++{
++	return TASK_NICE(p);
++}
++EXPORT_SYMBOL_GPL(task_nice);
++
++/**
++ * idle_cpu - is a given cpu idle currently?
++ * @cpu: the processor in question.
++ */
++int idle_cpu(int cpu)
++{
++	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
++}
++
++/**
++ * idle_task - return the idle task for a given cpu.
++ * @cpu: the processor in question.
++ */
++struct task_struct *idle_task(int cpu)
++{
++	return cpu_rq(cpu)->idle;
++}
++
++/**
++ * find_process_by_pid - find a process with a matching PID value.
++ * @pid: the pid in question.
++ */
++static inline struct task_struct *find_process_by_pid(pid_t pid)
++{
++	return pid ? find_task_by_vpid(pid) : current;
++}
++
++/* Actually do priority change: must hold grq lock. */
++static void
++__setscheduler(struct task_struct *p, struct rq *rq, int policy, int prio)
++{
++	int oldrtprio, oldprio;
++
++	BUG_ON(task_queued(p));
++
++	p->policy = policy;
++	oldrtprio = p->rt_priority;
++	p->rt_priority = prio;
++	p->normal_prio = normal_prio(p);
++	oldprio = p->prio;
++	/* we are holding p->pi_lock already */
++	p->prio = rt_mutex_getprio(p);
++	if (task_running(p)) {
++		reset_rq_task(rq, p);
++		/* Resched only if we might now be preempted */
++		if (p->prio > oldprio || p->rt_priority > oldrtprio)
++			resched_task(p);
++	}
++}
++
++/*
++ * check the target process has a UID that matches the current process's
++ */
++static bool check_same_owner(struct task_struct *p)
++{
++	const struct cred *cred = current_cred(), *pcred;
++	bool match;
++
++	rcu_read_lock();
++	pcred = __task_cred(p);
++	match = (cred->euid == pcred->euid ||
++		 cred->euid == pcred->uid);
++	rcu_read_unlock();
++	return match;
++}
++
++static int __sched_setscheduler(struct task_struct *p, int policy,
++		       struct sched_param *param, bool user)
++{
++	struct sched_param zero_param = { .sched_priority = 0 };
++	int queued, retval, oldpolicy = -1;
++	unsigned long flags, rlim_rtprio = 0;
++	int reset_on_fork;
++	struct rq *rq;
++
++	/* may grab non-irq protected spin_locks */
++	BUG_ON(in_interrupt());
++
++	if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
++		unsigned long lflags;
++
++		if (!lock_task_sighand(p, &lflags))
++			return -ESRCH;
++		rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
++		unlock_task_sighand(p, &lflags);
++		if (rlim_rtprio)
++			goto recheck;
++		/*
++		 * If the caller requested an RT policy without having the
++		 * necessary rights, we downgrade the policy to SCHED_ISO.
++		 * We also set the parameter to zero to pass the checks.
++		 */
++		policy = SCHED_ISO;
++		param = &zero_param;
++	}
++recheck:
++	/* double check policy once rq lock held */
++	if (policy < 0) {
++		reset_on_fork = p->sched_reset_on_fork;
++		policy = oldpolicy = p->policy;
++	} else {
++		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
++		policy &= ~SCHED_RESET_ON_FORK;
++
++		if (!SCHED_RANGE(policy))
++			return -EINVAL;
++	}
++
++	/*
++	 * Valid priorities for SCHED_FIFO and SCHED_RR are
++	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
++	 * SCHED_BATCH is 0.
++	 */
++	if (param->sched_priority < 0 ||
++	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) ||
++	    (!p->mm && param->sched_priority > MAX_RT_PRIO - 1))
++		return -EINVAL;
++	if (is_rt_policy(policy) != (param->sched_priority != 0))
++		return -EINVAL;
++
++	/*
++	 * Allow unprivileged RT tasks to decrease priority:
++	 */
++	if (user && !capable(CAP_SYS_NICE)) {
++		if (is_rt_policy(policy)) {
++			unsigned long rlim_rtprio =
++					task_rlimit(p, RLIMIT_RTPRIO);
++
++			/* can't set/change the rt policy */
++			if (policy != p->policy && !rlim_rtprio)
++				return -EPERM;
++
++			/* can't increase priority */
++			if (param->sched_priority > p->rt_priority &&
++			    param->sched_priority > rlim_rtprio)
++				return -EPERM;
++		} else {
++			switch (p->policy) {
++				/*
++				 * Can only downgrade policies but not back to
++				 * SCHED_NORMAL
++				 */
++				case SCHED_ISO:
++					if (policy == SCHED_ISO)
++						goto out;
++					if (policy == SCHED_NORMAL)
++						return -EPERM;
++					break;
++				case SCHED_BATCH:
++					if (policy == SCHED_BATCH)
++						goto out;
++					if (policy != SCHED_IDLEPRIO)
++						return -EPERM;
++					break;
++				case SCHED_IDLEPRIO:
++					if (policy == SCHED_IDLEPRIO)
++						goto out;
++					return -EPERM;
++				default:
++					break;
++			}
++		}
++
++		/* can't change other user's priorities */
++		if (!check_same_owner(p))
++			return -EPERM;
++
++		/* Normal users shall not reset the sched_reset_on_fork flag */
++		if (p->sched_reset_on_fork && !reset_on_fork)
++			return -EPERM;
++	}
++
++	if (user) {
++		retval = security_task_setscheduler(p);
++		if (retval)
++			return retval;
++	}
++
++	/*
++	 * make sure no PI-waiters arrive (or leave) while we are
++	 * changing the priority of the task:
++	 */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	/*
++	 * To be able to change p->policy safely, the apropriate
++	 * runqueue lock must be held.
++	 */
++	rq = __task_grq_lock(p);
++
++	/*
++	 * Changing the policy of the stop threads its a very bad idea
++	 */
++	if (p == rq->stop) {
++		__task_grq_unlock();
++		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++		return -EINVAL;
++	}
++
++	/* recheck policy now with rq lock held */
++	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
++		policy = oldpolicy = -1;
++		__task_grq_unlock();
++		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++		goto recheck;
++	}
++	update_clocks(rq);
++	p->sched_reset_on_fork = reset_on_fork;
++
++	queued = task_queued(p);
++	if (queued)
++		dequeue_task(p);
++	__setscheduler(p, rq, policy, param->sched_priority);
++	if (queued) {
++		enqueue_task(p);
++		try_preempt(p, rq);
++	}
++	__task_grq_unlock();
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++	rt_mutex_adjust_pi(p);
++out:
++	return 0;
++}
++
++/**
++ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
++ * @p: the task in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * NOTE that the task may be already dead.
++ */
++int sched_setscheduler(struct task_struct *p, int policy,
++		       struct sched_param *param)
++{
++	return __sched_setscheduler(p, policy, param, true);
++}
++
++EXPORT_SYMBOL_GPL(sched_setscheduler);
++
++/**
++ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
++ * @p: the task in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * Just like sched_setscheduler, only don't bother checking if the
++ * current context has permission.  For example, this is needed in
++ * stop_machine(): we create temporary high priority worker threads,
++ * but our caller might not have that capability.
++ */
++int sched_setscheduler_nocheck(struct task_struct *p, int policy,
++			       struct sched_param *param)
++{
++	return __sched_setscheduler(p, policy, param, false);
++}
++
++static int
++do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
++{
++	struct sched_param lparam;
++	struct task_struct *p;
++	int retval;
++
++	if (!param || pid < 0)
++		return -EINVAL;
++	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
++		return -EFAULT;
++
++	rcu_read_lock();
++	retval = -ESRCH;
++	p = find_process_by_pid(pid);
++	if (p != NULL)
++		retval = sched_setscheduler(p, policy, &lparam);
++	rcu_read_unlock();
++
++	return retval;
++}
++
++/**
++ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
++ * @pid: the pid in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ */
++asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
++				       struct sched_param __user *param)
++{
++	/* negative values for policy are not valid */
++	if (policy < 0)
++		return -EINVAL;
++
++	return do_sched_setscheduler(pid, policy, param);
++}
++
++/**
++ * sys_sched_setparam - set/change the RT priority of a thread
++ * @pid: the pid in question.
++ * @param: structure containing the new RT priority.
++ */
++SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
++{
++	return do_sched_setscheduler(pid, -1, param);
++}
++
++/**
++ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
++ * @pid: the pid in question.
++ */
++SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
++{
++	struct task_struct *p;
++	int retval = -EINVAL;
++
++	if (pid < 0)
++		goto out_nounlock;
++
++	retval = -ESRCH;
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	if (p) {
++		retval = security_task_getscheduler(p);
++		if (!retval)
++			retval = p->policy;
++	}
++	rcu_read_unlock();
++
++out_nounlock:
++	return retval;
++}
++
++/**
++ * sys_sched_getscheduler - get the RT priority of a thread
++ * @pid: the pid in question.
++ * @param: structure containing the RT priority.
++ */
++SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
++{
++	struct sched_param lp;
++	struct task_struct *p;
++	int retval = -EINVAL;
++
++	if (!param || pid < 0)
++		goto out_nounlock;
++
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	retval = -ESRCH;
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	lp.sched_priority = p->rt_priority;
++	rcu_read_unlock();
++
++	/*
++	 * This one might sleep, we cannot do it with a spinlock held ...
++	 */
++	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
++
++out_nounlock:
++	return retval;
++
++out_unlock:
++	rcu_read_unlock();
++	return retval;
++}
++
++long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
++{
++	cpumask_var_t cpus_allowed, new_mask;
++	struct task_struct *p;
++	int retval;
++
++	get_online_cpus();
++	rcu_read_lock();
++
++	p = find_process_by_pid(pid);
++	if (!p) {
++		rcu_read_unlock();
++		put_online_cpus();
++		return -ESRCH;
++	}
++
++	/* Prevent p going away */
++	get_task_struct(p);
++	rcu_read_unlock();
++
++	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
++		retval = -ENOMEM;
++		goto out_put_task;
++	}
++	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
++		retval = -ENOMEM;
++		goto out_free_cpus_allowed;
++	}
++	retval = -EPERM;
++	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
++		goto out_unlock;
++
++	retval = security_task_setscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	cpuset_cpus_allowed(p, cpus_allowed);
++	cpumask_and(new_mask, in_mask, cpus_allowed);
++again:
++	retval = set_cpus_allowed_ptr(p, new_mask);
++
++	if (!retval) {
++		cpuset_cpus_allowed(p, cpus_allowed);
++		if (!cpumask_subset(new_mask, cpus_allowed)) {
++			/*
++			 * We must have raced with a concurrent cpuset
++			 * update. Just reset the cpus_allowed to the
++			 * cpuset's cpus_allowed
++			 */
++			cpumask_copy(new_mask, cpus_allowed);
++			goto again;
++		}
++	}
++out_unlock:
++	free_cpumask_var(new_mask);
++out_free_cpus_allowed:
++	free_cpumask_var(cpus_allowed);
++out_put_task:
++	put_task_struct(p);
++	put_online_cpus();
++	return retval;
++}
++
++static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
++			     cpumask_t *new_mask)
++{
++	if (len < sizeof(cpumask_t)) {
++		memset(new_mask, 0, sizeof(cpumask_t));
++	} else if (len > sizeof(cpumask_t)) {
++		len = sizeof(cpumask_t);
++	}
++	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
++}
++
++
++/**
++ * sys_sched_setaffinity - set the cpu affinity of a process
++ * @pid: pid of the process
++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
++ * @user_mask_ptr: user-space pointer to the new cpu mask
++ */
++SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
++		unsigned long __user *, user_mask_ptr)
++{
++	cpumask_var_t new_mask;
++	int retval;
++
++	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
++		return -ENOMEM;
++
++	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
++	if (retval == 0)
++		retval = sched_setaffinity(pid, new_mask);
++	free_cpumask_var(new_mask);
++	return retval;
++}
++
++long sched_getaffinity(pid_t pid, cpumask_t *mask)
++{
++	struct task_struct *p;
++	unsigned long flags;
++	struct rq *rq;
++	int retval;
++
++	get_online_cpus();
++	rcu_read_lock();
++
++	retval = -ESRCH;
++	p = find_process_by_pid(pid);
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	rq = task_grq_lock(p, &flags);
++	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
++	task_grq_unlock(&flags);
++
++out_unlock:
++	rcu_read_unlock();
++	put_online_cpus();
++
++	return retval;
++}
++
++/**
++ * sys_sched_getaffinity - get the cpu affinity of a process
++ * @pid: pid of the process
++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
++ * @user_mask_ptr: user-space pointer to hold the current cpu mask
++ */
++SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
++		unsigned long __user *, user_mask_ptr)
++{
++	int ret;
++	cpumask_var_t mask;
++
++	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
++		return -EINVAL;
++	if (len & (sizeof(unsigned long)-1))
++		return -EINVAL;
++
++	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
++		return -ENOMEM;
++
++	ret = sched_getaffinity(pid, mask);
++	if (ret == 0) {
++		size_t retlen = min_t(size_t, len, cpumask_size());
++
++		if (copy_to_user(user_mask_ptr, mask, retlen))
++			ret = -EFAULT;
++		else
++			ret = retlen;
++	}
++	free_cpumask_var(mask);
++
++	return ret;
++}
++
++/**
++ * sys_sched_yield - yield the current processor to other threads.
++ *
++ * This function yields the current CPU to other tasks. It does this by
++ * scheduling away the current task. If it still has the earliest deadline
++ * it will be scheduled again as the next task.
++ */
++SYSCALL_DEFINE0(sched_yield)
++{
++	struct task_struct *p;
++	struct rq *rq;
++
++	p = current;
++	rq = task_grq_lock_irq(p);
++	schedstat_inc(rq, yld_count);
++	requeue_task(p);
++
++	/*
++	 * Since we are going to call schedule() anyway, there's
++	 * no need to preempt or enable interrupts:
++	 */
++	__release(grq.lock);
++	spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
++	do_raw_spin_unlock(&grq.lock);
++	preempt_enable_no_resched();
++
++	schedule();
++
++	return 0;
++}
++
++static inline int should_resched(void)
++{
++	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
++}
++
++static void __cond_resched(void)
++{
++	/* NOT a real fix but will make voluntary preempt work. 馬鹿な事 */
++	if (unlikely(system_state != SYSTEM_RUNNING))
++		return;
++
++	add_preempt_count(PREEMPT_ACTIVE);
++	schedule();
++	sub_preempt_count(PREEMPT_ACTIVE);
++}
++
++int __sched _cond_resched(void)
++{
++	if (should_resched()) {
++		__cond_resched();
++		return 1;
++	}
++	return 0;
++}
++EXPORT_SYMBOL(_cond_resched);
++
++/*
++ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
++ * call schedule, and on return reacquire the lock.
++ *
++ * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
++ * operations here to prevent schedule() from being called twice (once via
++ * spin_unlock(), once by hand).
++ */
++int __cond_resched_lock(spinlock_t *lock)
++{
++	int resched = should_resched();
++	int ret = 0;
++
++	lockdep_assert_held(lock);
++
++	if (spin_needbreak(lock) || resched) {
++		spin_unlock(lock);
++		if (resched)
++			__cond_resched();
++		else
++			cpu_relax();
++		ret = 1;
++		spin_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_lock);
++
++int __sched __cond_resched_softirq(void)
++{
++	BUG_ON(!in_softirq());
++
++	if (should_resched()) {
++		local_bh_enable();
++		__cond_resched();
++		local_bh_disable();
++		return 1;
++	}
++	return 0;
++}
++EXPORT_SYMBOL(__cond_resched_softirq);
++
++/**
++ * yield - yield the current processor to other threads.
++ *
++ * This is a shortcut for kernel-space yielding - it marks the
++ * thread runnable and calls sys_sched_yield().
++ */
++void __sched yield(void)
++{
++	set_current_state(TASK_RUNNING);
++	sys_sched_yield();
++}
++EXPORT_SYMBOL(yield);
++
++/*
++ * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
++ * that process accounting knows that this is a task in IO wait state.
++ *
++ * But don't do that if it is a deliberate, throttling IO wait (this task
++ * has set its backing_dev_info: the queue against which it should throttle)
++ */
++void __sched io_schedule(void)
++{
++	struct rq *rq = raw_rq();
++
++	delayacct_blkio_start();
++	atomic_inc(&rq->nr_iowait);
++	current->in_iowait = 1;
++	schedule();
++	current->in_iowait = 0;
++	atomic_dec(&rq->nr_iowait);
++	delayacct_blkio_end();
++}
++EXPORT_SYMBOL(io_schedule);
++
++long __sched io_schedule_timeout(long timeout)
++{
++	struct rq *rq = raw_rq();
++	long ret;
++
++	delayacct_blkio_start();
++	atomic_inc(&rq->nr_iowait);
++	current->in_iowait = 1;
++	ret = schedule_timeout(timeout);
++	current->in_iowait = 0;
++	atomic_dec(&rq->nr_iowait);
++	delayacct_blkio_end();
++	return ret;
++}
++
++/**
++ * sys_sched_get_priority_max - return maximum RT priority.
++ * @policy: scheduling class.
++ *
++ * this syscall returns the maximum rt_priority that can be used
++ * by a given scheduling class.
++ */
++SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
++{
++	int ret = -EINVAL;
++
++	switch (policy) {
++	case SCHED_FIFO:
++	case SCHED_RR:
++		ret = MAX_USER_RT_PRIO-1;
++		break;
++	case SCHED_NORMAL:
++	case SCHED_BATCH:
++	case SCHED_ISO:
++	case SCHED_IDLEPRIO:
++		ret = 0;
++		break;
++	}
++	return ret;
++}
++
++/**
++ * sys_sched_get_priority_min - return minimum RT priority.
++ * @policy: scheduling class.
++ *
++ * this syscall returns the minimum rt_priority that can be used
++ * by a given scheduling class.
++ */
++SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
++{
++	int ret = -EINVAL;
++
++	switch (policy) {
++	case SCHED_FIFO:
++	case SCHED_RR:
++		ret = 1;
++		break;
++	case SCHED_NORMAL:
++	case SCHED_BATCH:
++	case SCHED_ISO:
++	case SCHED_IDLEPRIO:
++		ret = 0;
++		break;
++	}
++	return ret;
++}
++
++/**
++ * sys_sched_rr_get_interval - return the default timeslice of a process.
++ * @pid: pid of the process.
++ * @interval: userspace pointer to the timeslice value.
++ *
++ * this syscall writes the default timeslice value of a given process
++ * into the user-space timespec buffer. A value of '0' means infinity.
++ */
++SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
++		struct timespec __user *, interval)
++{
++	struct task_struct *p;
++	unsigned int time_slice;
++	unsigned long flags;
++	struct rq *rq;
++	int retval;
++	struct timespec t;
++
++	if (pid < 0)
++		return -EINVAL;
++
++	retval = -ESRCH;
++	rcu_read_lock();
++	p = find_process_by_pid(pid);
++	if (!p)
++		goto out_unlock;
++
++	retval = security_task_getscheduler(p);
++	if (retval)
++		goto out_unlock;
++
++	rq = task_grq_lock(p, &flags);
++	time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
++	task_grq_unlock(&flags);
++
++	rcu_read_unlock();
++	t = ns_to_timespec(time_slice);
++	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
++	return retval;
++
++out_unlock:
++	rcu_read_unlock();
++	return retval;
++}
++
++static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
++
++void sched_show_task(struct task_struct *p)
++{
++	unsigned long free = 0;
++	unsigned state;
++
++	state = p->state ? __ffs(p->state) + 1 : 0;
++	printk(KERN_INFO "%-13.13s %c", p->comm,
++		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
++#if BITS_PER_LONG == 32
++	if (state == TASK_RUNNING)
++		printk(KERN_CONT " running  ");
++	else
++		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
++#else
++	if (state == TASK_RUNNING)
++		printk(KERN_CONT "  running task    ");
++	else
++		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
++#endif
++#ifdef CONFIG_DEBUG_STACK_USAGE
++	free = stack_not_used(p);
++#endif
++	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
++		task_pid_nr(p), task_pid_nr(p->real_parent),
++		(unsigned long)task_thread_info(p)->flags);
++
++	show_stack(p, NULL);
++}
++
++void show_state_filter(unsigned long state_filter)
++{
++	struct task_struct *g, *p;
++
++#if BITS_PER_LONG == 32
++	printk(KERN_INFO
++		"  task                PC stack   pid father\n");
++#else
++	printk(KERN_INFO
++		"  task                        PC stack   pid father\n");
++#endif
++	read_lock(&tasklist_lock);
++	do_each_thread(g, p) {
++		/*
++		 * reset the NMI-timeout, listing all files on a slow
++		 * console might take alot of time:
++		 */
++		touch_nmi_watchdog();
++		if (!state_filter || (p->state & state_filter))
++			sched_show_task(p);
++	} while_each_thread(g, p);
++
++	touch_all_softlockup_watchdogs();
++
++	read_unlock(&tasklist_lock);
++	/*
++	 * Only show locks if all tasks are dumped:
++	 */
++	if (!state_filter)
++		debug_show_all_locks();
++}
++
++/**
++ * init_idle - set up an idle thread for a given CPU
++ * @idle: task in question
++ * @cpu: cpu the idle task belongs to
++ *
++ * NOTE: this function does not set the idle thread's NEED_RESCHED
++ * flag, to make booting more robust.
++ */
++void init_idle(struct task_struct *idle, int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	unsigned long flags;
++
++	time_grq_lock(rq, &flags);
++	idle->last_ran = rq->clock;
++	idle->state = TASK_RUNNING;
++	/* Setting prio to illegal value shouldn't matter when never queued */
++	idle->prio = PRIO_LIMIT;
++	set_rq_task(rq, idle);
++	idle->cpus_allowed = cpumask_of_cpu(cpu);
++	/* Silence PROVE_RCU */
++	rcu_read_lock();
++	set_task_cpu(idle, cpu);
++	rcu_read_unlock();
++	rq->curr = rq->idle = idle;
++	idle->oncpu = 1;
++	set_cpuidle_map(cpu);
++	grq_unlock_irqrestore(&flags);
++
++	/* Set the preempt count _outside_ the spinlocks! */
++#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
++	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
++#else
++	task_thread_info(idle)->preempt_count = 0;
++#endif
++	ftrace_graph_init_task(idle);
++}
++
++/*
++ * In a system that switches off the HZ timer nohz_cpu_mask
++ * indicates which cpus entered this state. This is used
++ * in the rcu update to wait only for active cpus. For system
++ * which do not switch off the HZ timer nohz_cpu_mask should
++ * always be CPU_BITS_NONE.
++ */
++cpumask_var_t nohz_cpu_mask;
++
++#ifdef CONFIG_SMP
++#ifdef CONFIG_NO_HZ
++void select_nohz_load_balancer(int stop_tick)
++{
++}
++#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
++/**
++ * lowest_flag_domain - Return lowest sched_domain containing flag.
++ * @cpu:	The cpu whose lowest level of sched domain is to
++ *		be returned.
++ * @flag:	The flag to check for the lowest sched_domain
++ *		for the given cpu.
++ *
++ * Returns the lowest sched_domain of a cpu which contains the given flag.
++ */
++static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
++{
++	struct sched_domain *sd;
++
++	for_each_domain(cpu, sd)
++		if (sd && (sd->flags & flag))
++			break;
++
++	return sd;
++}
++
++/**
++ * for_each_flag_domain - Iterates over sched_domains containing the flag.
++ * @cpu:	The cpu whose domains we're iterating over.
++ * @sd:		variable holding the value of the power_savings_sd
++ *		for cpu.
++ * @flag:	The flag to filter the sched_domains to be iterated.
++ *
++ * Iterates over all the scheduler domains for a given cpu that has the 'flag'
++ * set, starting from the lowest sched_domain to the highest.
++ */
++#define for_each_flag_domain(cpu, sd, flag) \
++	for (sd = lowest_flag_domain(cpu, flag); \
++		(sd && (sd->flags & flag)); sd = sd->parent)
++
++#endif /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
++
++static inline void resched_cpu(int cpu)
++{
++	unsigned long flags;
++
++	grq_lock_irqsave(&flags);
++	resched_task(cpu_curr(cpu));
++	grq_unlock_irqrestore(&flags);
++}
++
++/*
++ * In the semi idle case, use the nearest busy cpu for migrating timers
++ * from an idle cpu.  This is good for power-savings.
++ *
++ * We don't do similar optimization for completely idle system, as
++ * selecting an idle cpu will add more delays to the timers than intended
++ * (as that cpu's timer base may not be uptodate wrt jiffies etc).
++ */
++int get_nohz_timer_target(void)
++{
++	int cpu = smp_processor_id();
++	int i;
++	struct sched_domain *sd;
++
++	for_each_domain(cpu, sd) {
++		for_each_cpu(i, sched_domain_span(sd))
++			if (!idle_cpu(i))
++				return i;
++	}
++	return cpu;
++}
++
++/*
++ * When add_timer_on() enqueues a timer into the timer wheel of an
++ * idle CPU then this timer might expire before the next timer event
++ * which is scheduled to wake up that CPU. In case of a completely
++ * idle system the next event might even be infinite time into the
++ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
++ * leaves the inner idle loop so the newly added timer is taken into
++ * account when the CPU goes back to idle and evaluates the timer
++ * wheel for the next timer event.
++ */
++void wake_up_idle_cpu(int cpu)
++{
++	struct task_struct *idle;
++	struct rq *rq;
++
++	if (cpu == smp_processor_id())
++		return;
++
++	rq = cpu_rq(cpu);
++	idle = rq->idle;
++
++	/*
++	 * This is safe, as this function is called with the timer
++	 * wheel base lock of (cpu) held. When the CPU is on the way
++	 * to idle and has not yet set rq->curr to idle then it will
++	 * be serialised on the timer wheel base lock and take the new
++	 * timer into account automatically.
++	 */
++	if (unlikely(rq->curr != idle))
++		return;
++
++	/*
++	 * We can set TIF_RESCHED on the idle task of the other CPU
++	 * lockless. The worst case is that the other CPU runs the
++	 * idle task through an additional NOOP schedule()
++	 */
++	set_tsk_need_resched(idle);
++
++	/* NEED_RESCHED must be visible before we test polling */
++	smp_mb();
++	if (!tsk_is_polling(idle))
++		smp_send_reschedule(cpu);
++}
++
++#endif /* CONFIG_NO_HZ */
++
++/*
++ * Change a given task's CPU affinity. Migrate the thread to a
++ * proper CPU and schedule it away if the CPU it's executing on
++ * is removed from the allowed bitmask.
++ *
++ * NOTE: the caller must have a valid reference to the task, the
++ * task must not exit() & deallocate itself prematurely. The
++ * call is not atomic; no spinlocks may be held.
++ */
++int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
++{
++	unsigned long flags;
++	int running_wrong = 0;
++	int queued = 0;
++	struct rq *rq;
++	int ret = 0;
++
++	rq = task_grq_lock(p, &flags);
++
++	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
++		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	queued = task_queued(p);
++
++	cpumask_copy(&p->cpus_allowed, new_mask);
++
++	/* Can the task run on the task's current CPU? If so, we're done */
++	if (cpumask_test_cpu(task_cpu(p), new_mask))
++		goto out;
++
++	if (task_running(p)) {
++		/* Task is running on the wrong cpu now, reschedule it. */
++		if (rq == this_rq()) {
++			set_tsk_need_resched(p);
++			running_wrong = 1;
++		} else
++			resched_task(p);
++	} else
++		set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask));
++
++out:
++	if (queued)
++		try_preempt(p, rq);
++	task_grq_unlock(&flags);
++
++	if (running_wrong)
++		_cond_resched();
++
++	return ret;
++}
++EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
++
++#ifdef CONFIG_HOTPLUG_CPU
++/*
++ * Reschedule a task if it's on a dead CPU.
++ */
++void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
++{
++	unsigned long flags;
++	struct rq *rq, *dead_rq;
++
++	dead_rq = cpu_rq(dead_cpu);
++	rq = task_grq_lock(p, &flags);
++	if (rq == dead_rq && task_running(p))
++		resched_task(p);
++	task_grq_unlock(&flags);
++
++}
++
++/* Run through task list and find tasks affined to just the dead cpu, then
++ * allocate a new affinity */
++static void break_sole_affinity(int src_cpu)
++{
++	struct task_struct *p, *t;
++
++	do_each_thread(t, p) {
++		if (!online_cpus(p)) {
++			cpumask_copy(&p->cpus_allowed, cpu_possible_mask);
++			/*
++			 * Don't tell them about moving exiting tasks or
++			 * kernel threads (both mm NULL), since they never
++			 * leave kernel.
++			 */
++			if (p->mm && printk_ratelimit()) {
++				printk(KERN_INFO "process %d (%s) no "
++				       "longer affine to cpu %d\n",
++				       task_pid_nr(p), p->comm, src_cpu);
++			}
++		}
++	} while_each_thread(t, p);
++}
++
++/*
++ * Schedules idle task to be the next runnable task on current CPU.
++ * It does so by boosting its priority to highest possible.
++ * Used by CPU offline code.
++ */
++void sched_idle_next(void)
++{
++	int this_cpu = smp_processor_id();
++	struct rq *rq = cpu_rq(this_cpu);
++	struct task_struct *idle = rq->idle;
++	unsigned long flags;
++
++	/* cpu has to be offline */
++	BUG_ON(cpu_online(this_cpu));
++
++	/*
++	 * Strictly not necessary since rest of the CPUs are stopped by now
++	 * and interrupts disabled on the current cpu.
++	 */
++	grq_lock_irqsave(&flags);
++	break_sole_affinity(this_cpu);
++
++	__setscheduler(idle, rq, SCHED_FIFO, STOP_PRIO);
++
++	activate_idle_task(idle);
++	set_tsk_need_resched(rq->curr);
++
++	grq_unlock_irqrestore(&flags);
++}
++
++/*
++ * Ensures that the idle task is using init_mm right before its cpu goes
++ * offline.
++ */
++void idle_task_exit(void)
++{
++	struct mm_struct *mm = current->active_mm;
++
++	BUG_ON(cpu_online(smp_processor_id()));
++
++	if (mm != &init_mm)
++		switch_mm(mm, &init_mm, current);
++	mmdrop(mm);
++}
++
++#endif /* CONFIG_HOTPLUG_CPU */
++
++void sched_set_stop_task(int cpu, struct task_struct *stop)
++{
++	struct sched_param stop_param = { .sched_priority = STOP_PRIO };
++	struct sched_param start_param = { .sched_priority = MAX_USER_RT_PRIO - 1 };
++	struct task_struct *old_stop = cpu_rq(cpu)->stop;
++
++	if (stop) {
++		/*
++		 * Make it appear like a SCHED_FIFO task, its something
++		 * userspace knows about and won't get confused about.
++		 *
++		 * Also, it will make PI more or less work without too
++		 * much confusion -- but then, stop work should not
++		 * rely on PI working anyway.
++		 */
++		sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
++	}
++
++	cpu_rq(cpu)->stop = stop;
++
++	if (old_stop) {
++		/*
++		 * Reset it back to a normal rt scheduling prio so that
++		 * it can die in pieces.
++		 */
++		sched_setscheduler_nocheck(old_stop, SCHED_FIFO, &start_param);
++	}
++}
++
++#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
++
++static struct ctl_table sd_ctl_dir[] = {
++	{
++		.procname	= "sched_domain",
++		.mode		= 0555,
++	},
++	{}
++};
++
++static struct ctl_table sd_ctl_root[] = {
++	{
++		.procname	= "kernel",
++		.mode		= 0555,
++		.child		= sd_ctl_dir,
++	},
++	{}
++};
++
++static struct ctl_table *sd_alloc_ctl_entry(int n)
++{
++	struct ctl_table *entry =
++		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
++
++	return entry;
++}
++
++static void sd_free_ctl_entry(struct ctl_table **tablep)
++{
++	struct ctl_table *entry;
++
++	/*
++	 * In the intermediate directories, both the child directory and
++	 * procname are dynamically allocated and could fail but the mode
++	 * will always be set. In the lowest directory the names are
++	 * static strings and all have proc handlers.
++	 */
++	for (entry = *tablep; entry->mode; entry++) {
++		if (entry->child)
++			sd_free_ctl_entry(&entry->child);
++		if (entry->proc_handler == NULL)
++			kfree(entry->procname);
++	}
++
++	kfree(*tablep);
++	*tablep = NULL;
++}
++
++static void
++set_table_entry(struct ctl_table *entry,
++		const char *procname, void *data, int maxlen,
++		mode_t mode, proc_handler *proc_handler)
++{
++	entry->procname = procname;
++	entry->data = data;
++	entry->maxlen = maxlen;
++	entry->mode = mode;
++	entry->proc_handler = proc_handler;
++}
++
++static struct ctl_table *
++sd_alloc_ctl_domain_table(struct sched_domain *sd)
++{
++	struct ctl_table *table = sd_alloc_ctl_entry(13);
++
++	if (table == NULL)
++		return NULL;
++
++	set_table_entry(&table[0], "min_interval", &sd->min_interval,
++		sizeof(long), 0644, proc_doulongvec_minmax);
++	set_table_entry(&table[1], "max_interval", &sd->max_interval,
++		sizeof(long), 0644, proc_doulongvec_minmax);
++	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[9], "cache_nice_tries",
++		&sd->cache_nice_tries,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[10], "flags", &sd->flags,
++		sizeof(int), 0644, proc_dointvec_minmax);
++	set_table_entry(&table[11], "name", sd->name,
++		CORENAME_MAX_SIZE, 0444, proc_dostring);
++	/* &table[12] is terminator */
++
++	return table;
++}
++
++static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
++{
++	struct ctl_table *entry, *table;
++	struct sched_domain *sd;
++	int domain_num = 0, i;
++	char buf[32];
++
++	for_each_domain(cpu, sd)
++		domain_num++;
++	entry = table = sd_alloc_ctl_entry(domain_num + 1);
++	if (table == NULL)
++		return NULL;
++
++	i = 0;
++	for_each_domain(cpu, sd) {
++		snprintf(buf, 32, "domain%d", i);
++		entry->procname = kstrdup(buf, GFP_KERNEL);
++		entry->mode = 0555;
++		entry->child = sd_alloc_ctl_domain_table(sd);
++		entry++;
++		i++;
++	}
++	return table;
++}
++
++static struct ctl_table_header *sd_sysctl_header;
++static void register_sched_domain_sysctl(void)
++{
++	int i, cpu_num = num_possible_cpus();
++	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
++	char buf[32];
++
++	WARN_ON(sd_ctl_dir[0].child);
++	sd_ctl_dir[0].child = entry;
++
++	if (entry == NULL)
++		return;
++
++	for_each_possible_cpu(i) {
++		snprintf(buf, 32, "cpu%d", i);
++		entry->procname = kstrdup(buf, GFP_KERNEL);
++		entry->mode = 0555;
++		entry->child = sd_alloc_ctl_cpu_table(i);
++		entry++;
++	}
++
++	WARN_ON(sd_sysctl_header);
++	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
++}
++
++/* may be called multiple times per register */
++static void unregister_sched_domain_sysctl(void)
++{
++	if (sd_sysctl_header)
++		unregister_sysctl_table(sd_sysctl_header);
++	sd_sysctl_header = NULL;
++	if (sd_ctl_dir[0].child)
++		sd_free_ctl_entry(&sd_ctl_dir[0].child);
++}
++#else
++static void register_sched_domain_sysctl(void)
++{
++}
++static void unregister_sched_domain_sysctl(void)
++{
++}
++#endif
++
++static void set_rq_online(struct rq *rq)
++{
++	if (!rq->online) {
++		cpumask_set_cpu(cpu_of(rq), rq->rd->online);
++		rq->online = 1;
++	}
++}
++
++static void set_rq_offline(struct rq *rq)
++{
++	if (rq->online) {
++		cpumask_clear_cpu(cpu_of(rq), rq->rd->online);
++		rq->online = 0;
++	}
++}
++
++/*
++ * migration_call - callback that gets triggered when a CPU is added.
++ */
++static int __cpuinit
++migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
++{
++#ifdef CONFIG_HOTPLUG_CPU
++	struct task_struct *idle;
++#endif
++	int cpu = (long)hcpu;
++	unsigned long flags;
++	struct rq *rq = cpu_rq(cpu);
++
++	switch (action) {
++
++	case CPU_UP_PREPARE:
++	case CPU_UP_PREPARE_FROZEN:
++		break;
++
++	case CPU_ONLINE:
++	case CPU_ONLINE_FROZEN:
++		/* Update our root-domain */
++		grq_lock_irqsave(&flags);
++		if (rq->rd) {
++			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
++
++			set_rq_online(rq);
++		}
++		grq_unlock_irqrestore(&flags);
++		break;
++
++#ifdef CONFIG_HOTPLUG_CPU
++	case CPU_DEAD:
++	case CPU_DEAD_FROZEN:
++		idle = rq->idle;
++		/* Idle task back to normal (off runqueue, low prio) */
++		grq_lock_irq();
++		return_task(idle, 1);
++		idle->static_prio = MAX_PRIO;
++		__setscheduler(idle, rq, SCHED_NORMAL, 0);
++		idle->prio = PRIO_LIMIT;
++		set_rq_task(rq, idle);
++		update_clocks(rq);
++		grq_unlock_irq();
++		break;
++
++	case CPU_DYING:
++	case CPU_DYING_FROZEN:
++		/* Update our root-domain */
++		grq_lock_irqsave(&flags);
++		if (rq->rd) {
++			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
++			set_rq_offline(rq);
++		}
++		grq_unlock_irqrestore(&flags);
++		break;
++#endif
++	}
++	return NOTIFY_OK;
++}
++
++/*
++ * Register at high priority so that task migration (migrate_all_tasks)
++ * happens before everything else.  This has to be lower priority than
++ * the notifier in the perf_counter subsystem, though.
++ */
++static struct notifier_block __cpuinitdata migration_notifier = {
++	.notifier_call = migration_call,
++	.priority = CPU_PRI_MIGRATION,
++};
++
++static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
++				      unsigned long action, void *hcpu)
++{
++	switch (action & ~CPU_TASKS_FROZEN) {
++	case CPU_ONLINE:
++	case CPU_DOWN_FAILED:
++		set_cpu_active((long)hcpu, true);
++		return NOTIFY_OK;
++	default:
++		return NOTIFY_DONE;
++	}
++}
++
++static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
++					unsigned long action, void *hcpu)
++{
++	switch (action & ~CPU_TASKS_FROZEN) {
++	case CPU_DOWN_PREPARE:
++		set_cpu_active((long)hcpu, false);
++		return NOTIFY_OK;
++	default:
++		return NOTIFY_DONE;
++	}
++}
++
++int __init migration_init(void)
++{
++	void *cpu = (void *)(long)smp_processor_id();
++	int err;
++
++	/* Initialise migration for the boot CPU */
++	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
++	BUG_ON(err == NOTIFY_BAD);
++	migration_call(&migration_notifier, CPU_ONLINE, cpu);
++	register_cpu_notifier(&migration_notifier);
++
++	/* Register cpu active notifiers */
++	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
++	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
++
++	return 0;
++}
++early_initcall(migration_init);
++#endif
++
++#ifdef CONFIG_SMP
++
++#ifdef CONFIG_SCHED_DEBUG
++
++static __read_mostly int sched_domain_debug_enabled;
++
++static int __init sched_domain_debug_setup(char *str)
++{
++	sched_domain_debug_enabled = 1;
++
++	return 0;
++}
++early_param("sched_debug", sched_domain_debug_setup);
++
++static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
++				  struct cpumask *groupmask)
++{
++	struct sched_group *group = sd->groups;
++	char str[256];
++
++	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
++	cpumask_clear(groupmask);
++
++	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
++
++	if (!(sd->flags & SD_LOAD_BALANCE)) {
++		printk("does not load-balance\n");
++		if (sd->parent)
++			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
++					" has parent");
++		return -1;
++	}
++
++	printk(KERN_CONT "span %s level %s\n", str, sd->name);
++
++	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
++		printk(KERN_ERR "ERROR: domain->span does not contain "
++				"CPU%d\n", cpu);
++	}
++	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
++		printk(KERN_ERR "ERROR: domain->groups does not contain"
++				" CPU%d\n", cpu);
++	}
++
++	printk(KERN_DEBUG "%*s groups:", level + 1, "");
++	do {
++		if (!group) {
++			printk("\n");
++			printk(KERN_ERR "ERROR: group is NULL\n");
++			break;
++		}
++
++		if (!group->cpu_power) {
++			printk(KERN_CONT "\n");
++			printk(KERN_ERR "ERROR: domain->cpu_power not "
++					"set\n");
++			break;
++		}
++
++		if (!cpumask_weight(sched_group_cpus(group))) {
++			printk(KERN_CONT "\n");
++			printk(KERN_ERR "ERROR: empty group\n");
++			break;
++		}
++
++		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
++			printk(KERN_CONT "\n");
++			printk(KERN_ERR "ERROR: repeated CPUs\n");
++			break;
++		}
++
++		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
++
++		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
++
++		printk(KERN_CONT " %s", str);
++		if (group->cpu_power != SCHED_LOAD_SCALE) {
++			printk(KERN_CONT " (cpu_power = %d)",
++				group->cpu_power);
++		}
++
++		group = group->next;
++	} while (group != sd->groups);
++	printk(KERN_CONT "\n");
++
++	if (!cpumask_equal(sched_domain_span(sd), groupmask))
++		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
++
++	if (sd->parent &&
++	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
++		printk(KERN_ERR "ERROR: parent span is not a superset "
++			"of domain->span\n");
++	return 0;
++}
++
++static void sched_domain_debug(struct sched_domain *sd, int cpu)
++{
++	cpumask_var_t groupmask;
++	int level = 0;
++
++	if (!sched_domain_debug_enabled)
++		return;
++
++	if (!sd) {
++		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
++		return;
++	}
++
++	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
++
++	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
++		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
++		return;
++	}
++
++	for (;;) {
++		if (sched_domain_debug_one(sd, cpu, level, groupmask))
++			break;
++		level++;
++		sd = sd->parent;
++		if (!sd)
++			break;
++	}
++	free_cpumask_var(groupmask);
++}
++#else /* !CONFIG_SCHED_DEBUG */
++# define sched_domain_debug(sd, cpu) do { } while (0)
++#endif /* CONFIG_SCHED_DEBUG */
++
++static int sd_degenerate(struct sched_domain *sd)
++{
++	if (cpumask_weight(sched_domain_span(sd)) == 1)
++		return 1;
++
++	/* Following flags need at least 2 groups */
++	if (sd->flags & (SD_LOAD_BALANCE |
++			 SD_BALANCE_NEWIDLE |
++			 SD_BALANCE_FORK |
++			 SD_BALANCE_EXEC |
++			 SD_SHARE_CPUPOWER |
++			 SD_SHARE_PKG_RESOURCES)) {
++		if (sd->groups != sd->groups->next)
++			return 0;
++	}
++
++	/* Following flags don't use groups */
++	if (sd->flags & (SD_WAKE_AFFINE))
++		return 0;
++
++	return 1;
++}
++
++static int
++sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
++{
++	unsigned long cflags = sd->flags, pflags = parent->flags;
++
++	if (sd_degenerate(parent))
++		return 1;
++
++	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
++		return 0;
++
++	/* Flags needing groups don't count if only 1 group in parent */
++	if (parent->groups == parent->groups->next) {
++		pflags &= ~(SD_LOAD_BALANCE |
++				SD_BALANCE_NEWIDLE |
++				SD_BALANCE_FORK |
++				SD_BALANCE_EXEC |
++				SD_SHARE_CPUPOWER |
++				SD_SHARE_PKG_RESOURCES);
++		if (nr_node_ids == 1)
++			pflags &= ~SD_SERIALIZE;
++	}
++	if (~cflags & pflags)
++		return 0;
++
++	return 1;
++}
++
++static void free_rootdomain(struct root_domain *rd)
++{
++	synchronize_sched();
++
++	free_cpumask_var(rd->rto_mask);
++	free_cpumask_var(rd->online);
++	free_cpumask_var(rd->span);
++	kfree(rd);
++}
++
++static void rq_attach_root(struct rq *rq, struct root_domain *rd)
++{
++	struct root_domain *old_rd = NULL;
++	unsigned long flags;
++
++	grq_lock_irqsave(&flags);
++
++	if (rq->rd) {
++		old_rd = rq->rd;
++
++		if (cpumask_test_cpu(cpu_of(rq), old_rd->online))
++			set_rq_offline(rq);
++
++		cpumask_clear_cpu(cpu_of(rq), old_rd->span);
++
++		/*
++		 * If we dont want to free the old_rt yet then
++		 * set old_rd to NULL to skip the freeing later
++		 * in this function:
++		 */
++		if (!atomic_dec_and_test(&old_rd->refcount))
++			old_rd = NULL;
++	}
++
++	atomic_inc(&rd->refcount);
++	rq->rd = rd;
++
++	cpumask_set_cpu(cpu_of(rq), rd->span);
++	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
++		set_rq_online(rq);
++
++	grq_unlock_irqrestore(&flags);
++
++	if (old_rd)
++		free_rootdomain(old_rd);
++}
++
++static int init_rootdomain(struct root_domain *rd)
++{
++	memset(rd, 0, sizeof(*rd));
++
++	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
++		goto out;
++	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
++		goto free_span;
++	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
++		goto free_online;
++
++	if (cpupri_init(&rd->cpupri) != 0)
++		goto free_rto_mask;
++	return 0;
++
++free_rto_mask:
++	free_cpumask_var(rd->rto_mask);
++free_online:
++	free_cpumask_var(rd->online);
++free_span:
++	free_cpumask_var(rd->span);
++out:
++	return -ENOMEM;
++}
++
++static void init_defrootdomain(void)
++{
++	init_rootdomain(&def_root_domain);
++
++	atomic_set(&def_root_domain.refcount, 1);
++}
++
++static struct root_domain *alloc_rootdomain(void)
++{
++	struct root_domain *rd;
++
++	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
++	if (!rd)
++		return NULL;
++
++	if (init_rootdomain(rd) != 0) {
++		kfree(rd);
++		return NULL;
++	}
++
++	return rd;
++}
++
++/*
++ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
++ * hold the hotplug lock.
++ */
++static void
++cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct sched_domain *tmp;
++
++	for (tmp = sd; tmp; tmp = tmp->parent)
++		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
++
++	/* Remove the sched domains which do not contribute to scheduling. */
++	for (tmp = sd; tmp; ) {
++		struct sched_domain *parent = tmp->parent;
++		if (!parent)
++			break;
++
++		if (sd_parent_degenerate(tmp, parent)) {
++			tmp->parent = parent->parent;
++			if (parent->parent)
++				parent->parent->child = tmp;
++		} else
++			tmp = tmp->parent;
++	}
++
++	if (sd && sd_degenerate(sd)) {
++		sd = sd->parent;
++		if (sd)
++			sd->child = NULL;
++	}
++
++	sched_domain_debug(sd, cpu);
++
++	rq_attach_root(rq, rd);
++	rcu_assign_pointer(rq->sd, sd);
++}
++
++/* cpus with isolated domains */
++static cpumask_var_t cpu_isolated_map;
++
++/* Setup the mask of cpus configured for isolated domains */
++static int __init isolated_cpu_setup(char *str)
++{
++	alloc_bootmem_cpumask_var(&cpu_isolated_map);
++	cpulist_parse(str, cpu_isolated_map);
++	return 1;
++}
++
++__setup("isolcpus=", isolated_cpu_setup);
++
++/*
++ * init_sched_build_groups takes the cpumask we wish to span, and a pointer
++ * to a function which identifies what group(along with sched group) a CPU
++ * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
++ * (due to the fact that we keep track of groups covered with a struct cpumask).
++ *
++ * init_sched_build_groups will build a circular linked list of the groups
++ * covered by the given span, and will set each group's ->cpumask correctly,
++ * and ->cpu_power to 0.
++ */
++static void
++init_sched_build_groups(const struct cpumask *span,
++			const struct cpumask *cpu_map,
++			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
++					struct sched_group **sg,
++					struct cpumask *tmpmask),
++			struct cpumask *covered, struct cpumask *tmpmask)
++{
++	struct sched_group *first = NULL, *last = NULL;
++	int i;
++
++	cpumask_clear(covered);
++
++	for_each_cpu(i, span) {
++		struct sched_group *sg;
++		int group = group_fn(i, cpu_map, &sg, tmpmask);
++		int j;
++
++		if (cpumask_test_cpu(i, covered))
++			continue;
++
++		cpumask_clear(sched_group_cpus(sg));
++		sg->cpu_power = 0;
++
++		for_each_cpu(j, span) {
++			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
++				continue;
++
++			cpumask_set_cpu(j, covered);
++			cpumask_set_cpu(j, sched_group_cpus(sg));
++		}
++		if (!first)
++			first = sg;
++		if (last)
++			last->next = sg;
++		last = sg;
++	}
++	last->next = first;
++}
++
++#define SD_NODES_PER_DOMAIN 16
++
++#ifdef CONFIG_NUMA
++
++/**
++ * find_next_best_node - find the next node to include in a sched_domain
++ * @node: node whose sched_domain we're building
++ * @used_nodes: nodes already in the sched_domain
++ *
++ * Find the next node to include in a given scheduling domain. Simply
++ * finds the closest node not already in the @used_nodes map.
++ *
++ * Should use nodemask_t.
++ */
++static int find_next_best_node(int node, nodemask_t *used_nodes)
++{
++	int i, n, val, min_val, best_node = 0;
++
++	min_val = INT_MAX;
++
++	for (i = 0; i < nr_node_ids; i++) {
++		/* Start at @node */
++		n = (node + i) % nr_node_ids;
++
++		if (!nr_cpus_node(n))
++			continue;
++
++		/* Skip already used nodes */
++		if (node_isset(n, *used_nodes))
++			continue;
++
++		/* Simple min distance search */
++		val = node_distance(node, n);
++
++		if (val < min_val) {
++			min_val = val;
++			best_node = n;
++		}
++	}
++
++	node_set(best_node, *used_nodes);
++	return best_node;
++}
++
++/**
++ * sched_domain_node_span - get a cpumask for a node's sched_domain
++ * @node: node whose cpumask we're constructing
++ * @span: resulting cpumask
++ *
++ * Given a node, construct a good cpumask for its sched_domain to span. It
++ * should be one that prevents unnecessary balancing, but also spreads tasks
++ * out optimally.
++ */
++static void sched_domain_node_span(int node, struct cpumask *span)
++{
++	nodemask_t used_nodes;
++	int i;
++
++	cpumask_clear(span);
++	nodes_clear(used_nodes);
++
++	cpumask_or(span, span, cpumask_of_node(node));
++	node_set(node, used_nodes);
++
++	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
++		int next_node = find_next_best_node(node, &used_nodes);
++
++		cpumask_or(span, span, cpumask_of_node(next_node));
++	}
++}
++#endif /* CONFIG_NUMA */
++
++int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
++
++/*
++ * The cpus mask in sched_group and sched_domain hangs off the end.
++ *
++ * ( See the the comments in include/linux/sched.h:struct sched_group
++ *   and struct sched_domain. )
++ */
++struct static_sched_group {
++	struct sched_group sg;
++	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
++};
++
++struct static_sched_domain {
++	struct sched_domain sd;
++	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
++};
++
++struct s_data {
++#ifdef CONFIG_NUMA
++	int			sd_allnodes;
++	cpumask_var_t		domainspan;
++	cpumask_var_t		covered;
++	cpumask_var_t		notcovered;
++#endif
++	cpumask_var_t		nodemask;
++	cpumask_var_t		this_sibling_map;
++	cpumask_var_t		this_core_map;
++	cpumask_var_t		this_book_map;
++	cpumask_var_t		send_covered;
++	cpumask_var_t		tmpmask;
++	struct sched_group	**sched_group_nodes;
++	struct root_domain	*rd;
++};
++
++enum s_alloc {
++	sa_sched_groups = 0,
++	sa_rootdomain,
++	sa_tmpmask,
++	sa_send_covered,
++	sa_this_book_map,
++	sa_this_core_map,
++	sa_this_sibling_map,
++	sa_nodemask,
++	sa_sched_group_nodes,
++#ifdef CONFIG_NUMA
++	sa_notcovered,
++	sa_covered,
++	sa_domainspan,
++#endif
++	sa_none,
++};
++
++/*
++ * SMT sched-domains:
++ */
++#ifdef CONFIG_SCHED_SMT
++static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
++static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
++
++static int
++cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
++		 struct sched_group **sg, struct cpumask *unused)
++{
++	if (sg)
++		*sg = &per_cpu(sched_groups, cpu).sg;
++	return cpu;
++}
++#endif /* CONFIG_SCHED_SMT */
++
++/*
++ * multi-core sched-domains:
++ */
++#ifdef CONFIG_SCHED_MC
++static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
++static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
++
++static int
++cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
++		  struct sched_group **sg, struct cpumask *mask)
++{
++	int group;
++#ifdef CONFIG_SCHED_SMT
++	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
++	group = cpumask_first(mask);
++#else
++	group = cpu;
++#endif
++	if (sg)
++		*sg = &per_cpu(sched_group_core, group).sg;
++	return group;
++}
++#endif /* CONFIG_SCHED_MC */
++
++/*
++ * book sched-domains:
++ */
++#ifdef CONFIG_SCHED_BOOK
++static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
++static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
++
++static int
++cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
++		  struct sched_group **sg, struct cpumask *mask)
++{
++	int group = cpu;
++#ifdef CONFIG_SCHED_MC
++	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
++	group = cpumask_first(mask);
++#elif defined(CONFIG_SCHED_SMT)
++	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
++	group = cpumask_first(mask);
++#endif
++	if (sg)
++		*sg = &per_cpu(sched_group_book, group).sg;
++	return group;
++}
++#endif /* CONFIG_SCHED_BOOK */
++
++static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
++static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
++
++static int
++cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
++		  struct sched_group **sg, struct cpumask *mask)
++{
++	int group;
++#ifdef CONFIG_SCHED_BOOK
++	cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
++	group = cpumask_first(mask);
++#elif defined(CONFIG_SCHED_MC)
++	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
++	group = cpumask_first(mask);
++#elif defined(CONFIG_SCHED_SMT)
++	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
++	group = cpumask_first(mask);
++#else
++	group = cpu;
++#endif
++	if (sg)
++		*sg = &per_cpu(sched_group_phys, group).sg;
++	return group;
++}
++
++/**
++ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
++ * @group: The group whose first cpu is to be returned.
++ */
++static inline unsigned int group_first_cpu(struct sched_group *group)
++{
++	return cpumask_first(sched_group_cpus(group));
++}
++
++#ifdef CONFIG_NUMA
++/*
++ * The init_sched_build_groups can't handle what we want to do with node
++ * groups, so roll our own. Now each node has its own list of groups which
++ * gets dynamically allocated.
++ */
++static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
++static struct sched_group ***sched_group_nodes_bycpu;
++
++static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
++static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
++
++static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
++				 struct sched_group **sg,
++				 struct cpumask *nodemask)
++{
++	int group;
++
++	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
++	group = cpumask_first(nodemask);
++
++	if (sg)
++		*sg = &per_cpu(sched_group_allnodes, group).sg;
++	return group;
++}
++
++static void init_numa_sched_groups_power(struct sched_group *group_head)
++{
++	struct sched_group *sg = group_head;
++	int j;
++
++	if (!sg)
++		return;
++	do {
++		for_each_cpu(j, sched_group_cpus(sg)) {
++			struct sched_domain *sd;
++
++			sd = &per_cpu(phys_domains, j).sd;
++			if (j != group_first_cpu(sd->groups)) {
++				/*
++				 * Only add "power" once for each
++				 * physical package.
++				 */
++				continue;
++			}
++
++			sg->cpu_power += sd->groups->cpu_power;
++		}
++		sg = sg->next;
++	} while (sg != group_head);
++}
++
++static int build_numa_sched_groups(struct s_data *d,
++				   const struct cpumask *cpu_map, int num)
++{
++	struct sched_domain *sd;
++	struct sched_group *sg, *prev;
++	int n, j;
++
++	cpumask_clear(d->covered);
++	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
++	if (cpumask_empty(d->nodemask)) {
++		d->sched_group_nodes[num] = NULL;
++		goto out;
++	}
++
++	sched_domain_node_span(num, d->domainspan);
++	cpumask_and(d->domainspan, d->domainspan, cpu_map);
++
++	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
++			  GFP_KERNEL, num);
++	if (!sg) {
++		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
++		       num);
++		return -ENOMEM;
++	}
++	d->sched_group_nodes[num] = sg;
++
++	for_each_cpu(j, d->nodemask) {
++		sd = &per_cpu(node_domains, j).sd;
++		sd->groups = sg;
++	}
++
++	sg->cpu_power = 0;
++	cpumask_copy(sched_group_cpus(sg), d->nodemask);
++	sg->next = sg;
++	cpumask_or(d->covered, d->covered, d->nodemask);
++
++	prev = sg;
++	for (j = 0; j < nr_node_ids; j++) {
++		n = (num + j) % nr_node_ids;
++		cpumask_complement(d->notcovered, d->covered);
++		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
++		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
++		if (cpumask_empty(d->tmpmask))
++			break;
++		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
++		if (cpumask_empty(d->tmpmask))
++			continue;
++		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
++				  GFP_KERNEL, num);
++		if (!sg) {
++			printk(KERN_WARNING
++			       "Can not alloc domain group for node %d\n", j);
++			return -ENOMEM;
++		}
++		sg->cpu_power = 0;
++		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
++		sg->next = prev->next;
++		cpumask_or(d->covered, d->covered, d->tmpmask);
++		prev->next = sg;
++		prev = sg;
++	}
++out:
++	return 0;
++}
++#endif /* CONFIG_NUMA */
++
++#ifdef CONFIG_NUMA
++/* Free memory allocated for various sched_group structures */
++static void free_sched_groups(const struct cpumask *cpu_map,
++			      struct cpumask *nodemask)
++{
++	int cpu, i;
++
++	for_each_cpu(cpu, cpu_map) {
++		struct sched_group **sched_group_nodes
++			= sched_group_nodes_bycpu[cpu];
++
++		if (!sched_group_nodes)
++			continue;
++
++		for (i = 0; i < nr_node_ids; i++) {
++			struct sched_group *oldsg, *sg = sched_group_nodes[i];
++
++			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
++			if (cpumask_empty(nodemask))
++				continue;
++
++			if (sg == NULL)
++				continue;
++			sg = sg->next;
++next_sg:
++			oldsg = sg;
++			sg = sg->next;
++			kfree(oldsg);
++			if (oldsg != sched_group_nodes[i])
++				goto next_sg;
++		}
++		kfree(sched_group_nodes);
++		sched_group_nodes_bycpu[cpu] = NULL;
++	}
++}
++#else /* !CONFIG_NUMA */
++static void free_sched_groups(const struct cpumask *cpu_map,
++			      struct cpumask *nodemask)
++{
++}
++#endif /* CONFIG_NUMA */
++
++/*
++ * Initialise sched groups cpu_power.
++ *
++ * cpu_power indicates the capacity of sched group, which is used while
++ * distributing the load between different sched groups in a sched domain.
++ * Typically cpu_power for all the groups in a sched domain will be same unless
++ * there are asymmetries in the topology. If there are asymmetries, group
++ * having more cpu_power will pickup more load compared to the group having
++ * less cpu_power.
++ *
++ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
++ * the maximum number of tasks a group can handle in the presence of other idle
++ * or lightly loaded groups in the same sched domain.
++ */
++static void init_sched_groups_power(int cpu, struct sched_domain *sd)
++{
++	struct sched_domain *child;
++	struct sched_group *group;
++	long power;
++	int weight;
++
++	WARN_ON(!sd || !sd->groups);
++
++	if (cpu != group_first_cpu(sd->groups))
++		return;
++
++	sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
++
++	child = sd->child;
++
++	sd->groups->cpu_power = 0;
++
++	if (!child) {
++		power = SCHED_LOAD_SCALE;
++		weight = cpumask_weight(sched_domain_span(sd));
++		/*
++		 * SMT siblings share the power of a single core.
++		 * Usually multiple threads get a better yield out of
++		 * that one core than a single thread would have,
++		 * reflect that in sd->smt_gain.
++		 */
++		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
++			power *= sd->smt_gain;
++			power /= weight;
++			power >>= SCHED_LOAD_SHIFT;
++		}
++		sd->groups->cpu_power += power;
++		return;
++	}
++
++	/*
++	 * Add cpu_power of each child group to this groups cpu_power
++	 */
++	group = child->groups;
++	do {
++		sd->groups->cpu_power += group->cpu_power;
++		group = group->next;
++	} while (group != child->groups);
++}
++
++/*
++ * Initialisers for schedule domains
++ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
++ */
++
++#ifdef CONFIG_SCHED_DEBUG
++# define SD_INIT_NAME(sd, type)		sd->name = #type
++#else
++# define SD_INIT_NAME(sd, type)		do { } while (0)
++#endif
++
++#define	SD_INIT(sd, type)	sd_init_##type(sd)
++
++#define SD_INIT_FUNC(type)	\
++static noinline void sd_init_##type(struct sched_domain *sd)	\
++{								\
++	memset(sd, 0, sizeof(*sd));				\
++	*sd = SD_##type##_INIT;					\
++	sd->level = SD_LV_##type;				\
++	SD_INIT_NAME(sd, type);					\
++}
++
++SD_INIT_FUNC(CPU)
++#ifdef CONFIG_NUMA
++ SD_INIT_FUNC(ALLNODES)
++ SD_INIT_FUNC(NODE)
++#endif
++#ifdef CONFIG_SCHED_SMT
++ SD_INIT_FUNC(SIBLING)
++#endif
++#ifdef CONFIG_SCHED_MC
++ SD_INIT_FUNC(MC)
++#endif
++#ifdef CONFIG_SCHED_BOOK
++ SD_INIT_FUNC(BOOK)
++#endif
++
++static int default_relax_domain_level = -1;
++
++static int __init setup_relax_domain_level(char *str)
++{
++	unsigned long val;
++
++	val = simple_strtoul(str, NULL, 0);
++	if (val < SD_LV_MAX)
++		default_relax_domain_level = val;
++
++	return 1;
++}
++__setup("relax_domain_level=", setup_relax_domain_level);
++
++static void set_domain_attribute(struct sched_domain *sd,
++				 struct sched_domain_attr *attr)
++{
++	int request;
++
++	if (!attr || attr->relax_domain_level < 0) {
++		if (default_relax_domain_level < 0)
++			return;
++		else
++			request = default_relax_domain_level;
++	} else
++		request = attr->relax_domain_level;
++	if (request < sd->level) {
++		/* turn off idle balance on this domain */
++		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
++	} else {
++		/* turn on idle balance on this domain */
++		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
++	}
++}
++
++static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
++				 const struct cpumask *cpu_map)
++{
++	switch (what) {
++	case sa_sched_groups:
++		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
++		d->sched_group_nodes = NULL;
++	case sa_rootdomain:
++		free_rootdomain(d->rd); /* fall through */
++	case sa_tmpmask:
++		free_cpumask_var(d->tmpmask); /* fall through */
++	case sa_send_covered:
++		free_cpumask_var(d->send_covered); /* fall through */
++	case sa_this_book_map:
++		free_cpumask_var(d->this_book_map); /* fall through */
++	case sa_this_core_map:
++		free_cpumask_var(d->this_core_map); /* fall through */
++	case sa_this_sibling_map:
++		free_cpumask_var(d->this_sibling_map); /* fall through */
++	case sa_nodemask:
++		free_cpumask_var(d->nodemask); /* fall through */
++	case sa_sched_group_nodes:
++#ifdef CONFIG_NUMA
++		kfree(d->sched_group_nodes); /* fall through */
++	case sa_notcovered:
++		free_cpumask_var(d->notcovered); /* fall through */
++	case sa_covered:
++		free_cpumask_var(d->covered); /* fall through */
++	case sa_domainspan:
++		free_cpumask_var(d->domainspan); /* fall through */
++#endif
++	case sa_none:
++		break;
++	}
++}
++
++static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
++						   const struct cpumask *cpu_map)
++{
++#ifdef CONFIG_NUMA
++	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
++		return sa_none;
++	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
++		return sa_domainspan;
++	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
++		return sa_covered;
++	/* Allocate the per-node list of sched groups */
++	d->sched_group_nodes = kcalloc(nr_node_ids,
++				      sizeof(struct sched_group *), GFP_KERNEL);
++	if (!d->sched_group_nodes) {
++		printk(KERN_WARNING "Can not alloc sched group node list\n");
++		return sa_notcovered;
++	}
++	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
++#endif
++	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
++		return sa_sched_group_nodes;
++	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
++		return sa_nodemask;
++	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
++		return sa_this_sibling_map;
++	if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
++		return sa_this_core_map;
++	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
++		return sa_this_book_map;
++	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
++		return sa_send_covered;
++	d->rd = alloc_rootdomain();
++	if (!d->rd) {
++		printk(KERN_WARNING "Cannot alloc root domain\n");
++		return sa_tmpmask;
++	}
++	return sa_rootdomain;
++}
++
++static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
++	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
++{
++	struct sched_domain *sd = NULL;
++#ifdef CONFIG_NUMA
++	struct sched_domain *parent;
++
++	d->sd_allnodes = 0;
++	if (cpumask_weight(cpu_map) >
++	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
++		sd = &per_cpu(allnodes_domains, i).sd;
++		SD_INIT(sd, ALLNODES);
++		set_domain_attribute(sd, attr);
++		cpumask_copy(sched_domain_span(sd), cpu_map);
++		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
++		d->sd_allnodes = 1;
++	}
++	parent = sd;
++
++	sd = &per_cpu(node_domains, i).sd;
++	SD_INIT(sd, NODE);
++	set_domain_attribute(sd, attr);
++	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
++	sd->parent = parent;
++	if (parent)
++		parent->child = sd;
++	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
++#endif
++	return sd;
++}
++
++static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
++	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
++	struct sched_domain *parent, int i)
++{
++	struct sched_domain *sd;
++	sd = &per_cpu(phys_domains, i).sd;
++	SD_INIT(sd, CPU);
++	set_domain_attribute(sd, attr);
++	cpumask_copy(sched_domain_span(sd), d->nodemask);
++	sd->parent = parent;
++	if (parent)
++		parent->child = sd;
++	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
++	return sd;
++}
++
++static struct sched_domain *__build_book_sched_domain(struct s_data *d,
++	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
++	struct sched_domain *parent, int i)
++{
++	struct sched_domain *sd = parent;
++#ifdef CONFIG_SCHED_BOOK
++	sd = &per_cpu(book_domains, i).sd;
++	SD_INIT(sd, BOOK);
++	set_domain_attribute(sd, attr);
++	cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
++	sd->parent = parent;
++	parent->child = sd;
++	cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
++#endif
++	return sd;
++}
++
++static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
++	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
++	struct sched_domain *parent, int i)
++{
++	struct sched_domain *sd = parent;
++#ifdef CONFIG_SCHED_MC
++	sd = &per_cpu(core_domains, i).sd;
++	SD_INIT(sd, MC);
++	set_domain_attribute(sd, attr);
++	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
++	sd->parent = parent;
++	parent->child = sd;
++	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
++#endif
++	return sd;
++}
++
++static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
++	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
++	struct sched_domain *parent, int i)
++{
++	struct sched_domain *sd = parent;
++#ifdef CONFIG_SCHED_SMT
++	sd = &per_cpu(cpu_domains, i).sd;
++	SD_INIT(sd, SIBLING);
++	set_domain_attribute(sd, attr);
++	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
++	sd->parent = parent;
++	parent->child = sd;
++	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
++#endif
++	return sd;
++}
++
++static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
++			       const struct cpumask *cpu_map, int cpu)
++{
++	switch (l) {
++#ifdef CONFIG_SCHED_SMT
++	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
++		cpumask_and(d->this_sibling_map, cpu_map,
++			    topology_thread_cpumask(cpu));
++		if (cpu == cpumask_first(d->this_sibling_map))
++			init_sched_build_groups(d->this_sibling_map, cpu_map,
++						&cpu_to_cpu_group,
++						d->send_covered, d->tmpmask);
++		break;
++#endif
++#ifdef CONFIG_SCHED_MC
++	case SD_LV_MC: /* set up multi-core groups */
++		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
++		if (cpu == cpumask_first(d->this_core_map))
++			init_sched_build_groups(d->this_core_map, cpu_map,
++						&cpu_to_core_group,
++						d->send_covered, d->tmpmask);
++		break;
++#endif
++#ifdef CONFIG_SCHED_BOOK
++	case SD_LV_BOOK: /* set up book groups */
++		cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
++		if (cpu == cpumask_first(d->this_book_map))
++			init_sched_build_groups(d->this_book_map, cpu_map,
++						&cpu_to_book_group,
++						d->send_covered, d->tmpmask);
++		break;
++#endif
++	case SD_LV_CPU: /* set up physical groups */
++		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
++		if (!cpumask_empty(d->nodemask))
++			init_sched_build_groups(d->nodemask, cpu_map,
++						&cpu_to_phys_group,
++						d->send_covered, d->tmpmask);
++		break;
++#ifdef CONFIG_NUMA
++	case SD_LV_ALLNODES:
++		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
++					d->send_covered, d->tmpmask);
++		break;
++#endif
++	default:
++		break;
++	}
++}
++
++/*
++ * Build sched domains for a given set of cpus and attach the sched domains
++ * to the individual cpus
++ */
++static int __build_sched_domains(const struct cpumask *cpu_map,
++				 struct sched_domain_attr *attr)
++{
++	enum s_alloc alloc_state = sa_none;
++	struct s_data d;
++	struct sched_domain *sd;
++	int i;
++#ifdef CONFIG_NUMA
++	d.sd_allnodes = 0;
++#endif
++
++	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
++	if (alloc_state != sa_rootdomain)
++		goto error;
++	alloc_state = sa_sched_groups;
++
++	/*
++	 * Set up domains for cpus specified by the cpu_map.
++	 */
++	for_each_cpu(i, cpu_map) {
++		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
++			    cpu_map);
++
++		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
++		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
++		sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
++		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
++		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
++	}
++
++	for_each_cpu(i, cpu_map) {
++		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
++		build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
++		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
++	}
++
++	/* Set up physical groups */
++	for (i = 0; i < nr_node_ids; i++)
++		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
++
++#ifdef CONFIG_NUMA
++	/* Set up node groups */
++	if (d.sd_allnodes)
++		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
++
++	for (i = 0; i < nr_node_ids; i++)
++		if (build_numa_sched_groups(&d, cpu_map, i))
++			goto error;
++#endif
++
++	/* Calculate CPU power for physical packages and nodes */
++#ifdef CONFIG_SCHED_SMT
++	for_each_cpu(i, cpu_map) {
++		sd = &per_cpu(cpu_domains, i).sd;
++		init_sched_groups_power(i, sd);
++	}
++#endif
++#ifdef CONFIG_SCHED_MC
++	for_each_cpu(i, cpu_map) {
++		sd = &per_cpu(core_domains, i).sd;
++		init_sched_groups_power(i, sd);
++	}
++#endif
++#ifdef CONFIG_SCHED_BOOK
++	for_each_cpu(i, cpu_map) {
++		sd = &per_cpu(book_domains, i).sd;
++		init_sched_groups_power(i, sd);
++	}
++#endif
++
++	for_each_cpu(i, cpu_map) {
++		sd = &per_cpu(phys_domains, i).sd;
++		init_sched_groups_power(i, sd);
++	}
++
++#ifdef CONFIG_NUMA
++	for (i = 0; i < nr_node_ids; i++)
++		init_numa_sched_groups_power(d.sched_group_nodes[i]);
++
++	if (d.sd_allnodes) {
++		struct sched_group *sg;
++
++		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
++								d.tmpmask);
++		init_numa_sched_groups_power(sg);
++	}
++#endif
++
++	/* Attach the domains */
++	for_each_cpu(i, cpu_map) {
++#ifdef CONFIG_SCHED_SMT
++		sd = &per_cpu(cpu_domains, i).sd;
++#elif defined(CONFIG_SCHED_MC)
++		sd = &per_cpu(core_domains, i).sd;
++#elif defined(CONFIG_SCHED_BOOK)
++		sd = &per_cpu(book_domains, i).sd;
++#else
++		sd = &per_cpu(phys_domains, i).sd;
++#endif
++		cpu_attach_domain(sd, d.rd, i);
++	}
++
++	d.sched_group_nodes = NULL; /* don't free this we still need it */
++	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
++	return 0;
++
++error:
++	__free_domain_allocs(&d, alloc_state, cpu_map);
++	return -ENOMEM;
++}
++
++static int build_sched_domains(const struct cpumask *cpu_map)
++{
++	return __build_sched_domains(cpu_map, NULL);
++}
++
++static cpumask_var_t *doms_cur;	/* current sched domains */
++static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
++static struct sched_domain_attr *dattr_cur;
++				/* attribues of custom domains in 'doms_cur' */
++
++/*
++ * Special case: If a kmalloc of a doms_cur partition (array of
++ * cpumask) fails, then fallback to a single sched domain,
++ * as determined by the single cpumask fallback_doms.
++ */
++static cpumask_var_t fallback_doms;
++
++/*
++ * arch_update_cpu_topology lets virtualised architectures update the
++ * cpu core maps. It is supposed to return 1 if the topology changed
++ * or 0 if it stayed the same.
++ */
++int __attribute__((weak)) arch_update_cpu_topology(void)
++{
++	return 0;
++}
++
++cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
++{
++	int i;
++	cpumask_var_t *doms;
++
++	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
++	if (!doms)
++		return NULL;
++	for (i = 0; i < ndoms; i++) {
++		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
++			free_sched_domains(doms, i);
++			return NULL;
++		}
++	}
++	return doms;
++}
++
++void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
++{
++	unsigned int i;
++	for (i = 0; i < ndoms; i++)
++		free_cpumask_var(doms[i]);
++	kfree(doms);
++}
++
++/*
++ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
++ * For now this just excludes isolated cpus, but could be used to
++ * exclude other special cases in the future.
++ */
++static int arch_init_sched_domains(const struct cpumask *cpu_map)
++{
++	int err;
++
++	arch_update_cpu_topology();
++	ndoms_cur = 1;
++	doms_cur = alloc_sched_domains(ndoms_cur);
++	if (!doms_cur)
++		doms_cur = &fallback_doms;
++	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
++	dattr_cur = NULL;
++	err = build_sched_domains(doms_cur[0]);
++	register_sched_domain_sysctl();
++
++	return err;
++}
++
++static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
++				       struct cpumask *tmpmask)
++{
++	free_sched_groups(cpu_map, tmpmask);
++}
++
++/*
++ * Detach sched domains from a group of cpus specified in cpu_map
++ * These cpus will now be attached to the NULL domain
++ */
++static void detach_destroy_domains(const struct cpumask *cpu_map)
++{
++	/* Save because hotplug lock held. */
++	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
++	int i;
++
++	for_each_cpu(i, cpu_map)
++		cpu_attach_domain(NULL, &def_root_domain, i);
++	synchronize_sched();
++	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
++}
++
++/* handle null as "default" */
++static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
++			struct sched_domain_attr *new, int idx_new)
++{
++	struct sched_domain_attr tmp;
++
++	/* fast path */
++	if (!new && !cur)
++		return 1;
++
++	tmp = SD_ATTR_INIT;
++	return !memcmp(cur ? (cur + idx_cur) : &tmp,
++			new ? (new + idx_new) : &tmp,
++			sizeof(struct sched_domain_attr));
++}
++
++/*
++ * Partition sched domains as specified by the 'ndoms_new'
++ * cpumasks in the array doms_new[] of cpumasks. This compares
++ * doms_new[] to the current sched domain partitioning, doms_cur[].
++ * It destroys each deleted domain and builds each new domain.
++ *
++ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
++ * The masks don't intersect (don't overlap.) We should setup one
++ * sched domain for each mask. CPUs not in any of the cpumasks will
++ * not be load balanced. If the same cpumask appears both in the
++ * current 'doms_cur' domains and in the new 'doms_new', we can leave
++ * it as it is.
++ *
++ * The passed in 'doms_new' should be allocated using
++ * alloc_sched_domains.  This routine takes ownership of it and will
++ * free_sched_domains it when done with it. If the caller failed the
++ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
++ * and partition_sched_domains() will fallback to the single partition
++ * 'fallback_doms', it also forces the domains to be rebuilt.
++ *
++ * If doms_new == NULL it will be replaced with cpu_online_mask.
++ * ndoms_new == 0 is a special case for destroying existing domains,
++ * and it will not create the default domain.
++ *
++ * Call with hotplug lock held
++ */
++void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
++			     struct sched_domain_attr *dattr_new)
++{
++	int i, j, n;
++	int new_topology;
++
++	mutex_lock(&sched_domains_mutex);
++
++	/* always unregister in case we don't destroy any domains */
++	unregister_sched_domain_sysctl();
++
++	/* Let architecture update cpu core mappings. */
++	new_topology = arch_update_cpu_topology();
++
++	n = doms_new ? ndoms_new : 0;
++
++	/* Destroy deleted domains */
++	for (i = 0; i < ndoms_cur; i++) {
++		for (j = 0; j < n && !new_topology; j++) {
++			if (cpumask_equal(doms_cur[i], doms_new[j])
++			    && dattrs_equal(dattr_cur, i, dattr_new, j))
++				goto match1;
++		}
++		/* no match - a current sched domain not in new doms_new[] */
++		detach_destroy_domains(doms_cur[i]);
++match1:
++		;
++	}
++
++	if (doms_new == NULL) {
++		ndoms_cur = 0;
++		doms_new = &fallback_doms;
++		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
++		WARN_ON_ONCE(dattr_new);
++	}
++
++	/* Build new domains */
++	for (i = 0; i < ndoms_new; i++) {
++		for (j = 0; j < ndoms_cur && !new_topology; j++) {
++			if (cpumask_equal(doms_new[i], doms_cur[j])
++			    && dattrs_equal(dattr_new, i, dattr_cur, j))
++				goto match2;
++		}
++		/* no match - add a new doms_new */
++		__build_sched_domains(doms_new[i],
++					dattr_new ? dattr_new + i : NULL);
++match2:
++		;
++	}
++
++	/* Remember the new sched domains */
++	if (doms_cur != &fallback_doms)
++		free_sched_domains(doms_cur, ndoms_cur);
++	kfree(dattr_cur);	/* kfree(NULL) is safe */
++	doms_cur = doms_new;
++	dattr_cur = dattr_new;
++	ndoms_cur = ndoms_new;
++
++	register_sched_domain_sysctl();
++
++	mutex_unlock(&sched_domains_mutex);
++}
++
++#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
++static void arch_reinit_sched_domains(void)
++{
++	get_online_cpus();
++
++	/* Destroy domains first to force the rebuild */
++	partition_sched_domains(0, NULL, NULL);
++
++	rebuild_sched_domains();
++	put_online_cpus();
++}
++
++static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
++{
++	unsigned int level = 0;
++
++	if (sscanf(buf, "%u", &level) != 1)
++		return -EINVAL;
++
++	/*
++	 * level is always be positive so don't check for
++	 * level < POWERSAVINGS_BALANCE_NONE which is 0
++	 * What happens on 0 or 1 byte write,
++	 * need to check for count as well?
++	 */
++
++	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
++		return -EINVAL;
++
++	if (smt)
++		sched_smt_power_savings = level;
++	else
++		sched_mc_power_savings = level;
++
++	arch_reinit_sched_domains();
++
++	return count;
++}
++
++#ifdef CONFIG_SCHED_MC
++static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
++					   struct sysdev_class_attribute *attr,
++					   char *page)
++{
++	return sprintf(page, "%u\n", sched_mc_power_savings);
++}
++static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
++					    struct sysdev_class_attribute *attr,
++					    const char *buf, size_t count)
++{
++	return sched_power_savings_store(buf, count, 0);
++}
++static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
++			 sched_mc_power_savings_show,
++			 sched_mc_power_savings_store);
++#endif
++
++#ifdef CONFIG_SCHED_SMT
++static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
++					    struct sysdev_class_attribute *attr,
++					    char *page)
++{
++	return sprintf(page, "%u\n", sched_smt_power_savings);
++}
++static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
++					     struct sysdev_class_attribute *attr,
++					     const char *buf, size_t count)
++{
++	return sched_power_savings_store(buf, count, 1);
++}
++static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
++		   sched_smt_power_savings_show,
++		   sched_smt_power_savings_store);
++#endif
++
++int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
++{
++	int err = 0;
++
++#ifdef CONFIG_SCHED_SMT
++	if (smt_capable())
++		err = sysfs_create_file(&cls->kset.kobj,
++					&attr_sched_smt_power_savings.attr);
++#endif
++#ifdef CONFIG_SCHED_MC
++	if (!err && mc_capable())
++		err = sysfs_create_file(&cls->kset.kobj,
++					&attr_sched_mc_power_savings.attr);
++#endif
++	return err;
++}
++#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
++
++/*
++ * Update cpusets according to cpu_active mask.  If cpusets are
++ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
++ * around partition_sched_domains().
++ */
++static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
++			     void *hcpu)
++{
++	switch (action & ~CPU_TASKS_FROZEN) {
++	case CPU_ONLINE:
++	case CPU_DOWN_FAILED:
++		cpuset_update_active_cpus();
++		return NOTIFY_OK;
++	default:
++		return NOTIFY_DONE;
++	}
++}
++
++static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
++			       void *hcpu)
++{
++	switch (action & ~CPU_TASKS_FROZEN) {
++	case CPU_DOWN_PREPARE:
++		cpuset_update_active_cpus();
++		return NOTIFY_OK;
++	default:
++		return NOTIFY_DONE;
++	}
++}
++
++static int update_runtime(struct notifier_block *nfb,
++				unsigned long action, void *hcpu)
++{
++	switch (action) {
++	case CPU_DOWN_PREPARE:
++	case CPU_DOWN_PREPARE_FROZEN:
++		return NOTIFY_OK;
++
++	case CPU_DOWN_FAILED:
++	case CPU_DOWN_FAILED_FROZEN:
++	case CPU_ONLINE:
++	case CPU_ONLINE_FROZEN:
++		return NOTIFY_OK;
++
++	default:
++		return NOTIFY_DONE;
++	}
++}
++
++#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
++/*
++ * Cheaper version of the below functions in case support for SMT and MC is
++ * compiled in but CPUs have no siblings.
++ */
++static int sole_cpu_idle(unsigned long cpu)
++{
++	return rq_idle(cpu_rq(cpu));
++}
++#endif
++#ifdef CONFIG_SCHED_SMT
++/* All this CPU's SMT siblings are idle */
++static int siblings_cpu_idle(unsigned long cpu)
++{
++	return cpumask_subset(&(cpu_rq(cpu)->smt_siblings),
++			      &grq.cpu_idle_map);
++}
++#endif
++#ifdef CONFIG_SCHED_MC
++/* All this CPU's shared cache siblings are idle */
++static int cache_cpu_idle(unsigned long cpu)
++{
++	return cpumask_subset(&(cpu_rq(cpu)->cache_siblings),
++			      &grq.cpu_idle_map);
++}
++#endif
++
++void __init sched_init_smp(void)
++{
++	struct sched_domain *sd;
++	int cpu, cpus;
++
++	cpumask_var_t non_isolated_cpus;
++
++	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
++	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
++
++#if defined(CONFIG_NUMA)
++	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
++								GFP_KERNEL);
++	BUG_ON(sched_group_nodes_bycpu == NULL);
++#endif
++	get_online_cpus();
++	mutex_lock(&sched_domains_mutex);
++	arch_init_sched_domains(cpu_active_mask);
++	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
++	if (cpumask_empty(non_isolated_cpus))
++		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
++	mutex_unlock(&sched_domains_mutex);
++	put_online_cpus();
++
++	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
++	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
++
++	/* RT runtime code needs to handle some hotplug events */
++	hotcpu_notifier(update_runtime, 0);
++
++	/* Move init over to a non-isolated CPU */
++	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
++		BUG();
++	free_cpumask_var(non_isolated_cpus);
++
++	/*
++	 * Assume that every added cpu gives us slightly less overall latency
++	 * allowing us to increase the base rr_interval, non-linearly and with
++	 * an upper bound.
++	 */
++	cpus = num_online_cpus();
++	rr_interval = rr_interval * (4 * cpus + 4) / (cpus + 6);
++
++	grq_lock_irq();
++	/*
++	 * Set up the relative cache distance of each online cpu from each
++	 * other in a simple array for quick lookup. Locality is determined
++	 * by the closest sched_domain that CPUs are separated by. CPUs with
++	 * shared cache in SMT and MC are treated as local. Separate CPUs
++	 * (within the same package or physically) within the same node are
++	 * treated as not local. CPUs not even in the same domain (different
++	 * nodes) are treated as very distant.
++	 */
++	for_each_online_cpu(cpu) {
++		struct rq *rq = cpu_rq(cpu);
++		for_each_domain(cpu, sd) {
++			unsigned long locality;
++			int other_cpu;
++
++#ifdef CONFIG_SCHED_SMT
++			if (sd->level == SD_LV_SIBLING) {
++				for_each_cpu_mask(other_cpu, *sched_domain_span(sd))
++					cpumask_set_cpu(other_cpu, &rq->smt_siblings);
++			}
++#endif
++#ifdef CONFIG_SCHED_MC
++			if (sd->level == SD_LV_MC) {
++				for_each_cpu_mask(other_cpu, *sched_domain_span(sd))
++					cpumask_set_cpu(other_cpu, &rq->cache_siblings);
++			}
++#endif
++			if (sd->level <= SD_LV_SIBLING)
++				locality = 1;
++			else if (sd->level <= SD_LV_MC)
++				locality = 2;
++			else if (sd->level <= SD_LV_NODE)
++				locality = 3;
++			else
++				continue;
++
++			for_each_cpu_mask(other_cpu, *sched_domain_span(sd)) {
++				if (locality < rq->cpu_locality[other_cpu])
++					rq->cpu_locality[other_cpu] = locality;
++			}
++		}
++
++/*
++		 * Each runqueue has its own function in case it doesn't have
++		 * siblings of its own allowing mixed topologies.
++		 */
++#ifdef CONFIG_SCHED_SMT
++		if (cpus_weight(rq->smt_siblings) > 1)
++			rq->siblings_idle = siblings_cpu_idle;
++#endif
++#ifdef CONFIG_SCHED_MC
++		if (cpus_weight(rq->cache_siblings) > 1)
++			rq->cache_idle = cache_cpu_idle;
++#endif
++	}
++	grq_unlock_irq();
++}
++#else
++void __init sched_init_smp(void)
++{
++}
++#endif /* CONFIG_SMP */
++
++unsigned int sysctl_timer_migration = 1;
++
++int in_sched_functions(unsigned long addr)
++{
++	return in_lock_functions(addr) ||
++		(addr >= (unsigned long)__sched_text_start
++		&& addr < (unsigned long)__sched_text_end);
++}
++
++void __init sched_init(void)
++{
++	int i;
++	struct rq *rq;
++
++	prio_ratios[0] = 128;
++	for (i = 1 ; i < PRIO_RANGE ; i++)
++		prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
++
++	raw_spin_lock_init(&grq.lock);
++	grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0;
++	grq.niffies = 0;
++	grq.last_jiffy = jiffies;
++	raw_spin_lock_init(&grq.iso_lock);
++	grq.iso_ticks = grq.iso_refractory = 0;
++#ifdef CONFIG_SMP
++	init_defrootdomain();
++	grq.qnr = grq.idle_cpus = 0;
++	cpumask_clear(&grq.cpu_idle_map);
++#else
++	uprq = &per_cpu(runqueues, 0);
++#endif
++	for_each_possible_cpu(i) {
++		rq = cpu_rq(i);
++		rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc =
++			      rq->iowait_pc = rq->idle_pc = 0;
++		rq->dither = 0;
++#ifdef CONFIG_SMP
++		rq->last_niffy = 0;
++		rq->sd = NULL;
++		rq->rd = NULL;
++		rq->online = 0;
++		rq->cpu = i;
++		rq_attach_root(rq, &def_root_domain);
++#endif
++		atomic_set(&rq->nr_iowait, 0);
++	}
++
++#ifdef CONFIG_SMP
++	nr_cpu_ids = i;
++	/*
++	 * Set the base locality for cpu cache distance calculation to
++	 * "distant" (3). Make sure the distance from a CPU to itself is 0.
++	 */
++	for_each_possible_cpu(i) {
++		int j;
++
++		rq = cpu_rq(i);
++#ifdef CONFIG_SCHED_SMT
++		cpumask_clear(&rq->smt_siblings);
++		cpumask_set_cpu(i, &rq->smt_siblings);
++		rq->siblings_idle = sole_cpu_idle;
++		cpumask_set_cpu(i, &rq->smt_siblings);
++#endif
++#ifdef CONFIG_SCHED_MC
++		cpumask_clear(&rq->cache_siblings);
++		cpumask_set_cpu(i, &rq->cache_siblings);
++		rq->cache_idle = sole_cpu_idle;
++		cpumask_set_cpu(i, &rq->cache_siblings);
++#endif
++		rq->cpu_locality = kmalloc(nr_cpu_ids * sizeof(unsigned long),
++					   GFP_NOWAIT);
++		for_each_possible_cpu(j) {
++			if (i == j)
++				rq->cpu_locality[j] = 0;
++			else
++				rq->cpu_locality[j] = 4;
++		}
++	}
++#endif
++
++	for (i = 0; i < PRIO_LIMIT; i++)
++		INIT_LIST_HEAD(grq.queue + i);
++	/* delimiter for bitsearch */
++	__set_bit(PRIO_LIMIT, grq.prio_bitmap);
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
++#endif
++
++#ifdef CONFIG_RT_MUTEXES
++	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
++#endif
++
++	/*
++	 * The boot idle thread does lazy MMU switching as well:
++	 */
++	atomic_inc(&init_mm.mm_count);
++	enter_lazy_tlb(&init_mm, current);
++
++	/*
++	 * Make us the idle thread. Technically, schedule() should not be
++	 * called from this thread, however somewhere below it might be,
++	 * but because we are the idle thread, we just pick up running again
++	 * when this runqueue becomes "idle".
++	 */
++	init_idle(current, smp_processor_id());
++
++	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
++	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
++#ifdef CONFIG_SMP
++	/* May be allocated at isolcpus cmdline parse time */
++	if (cpu_isolated_map == NULL)
++		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
++#endif /* SMP */
++	perf_event_init();
++}
++
++#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
++static inline int preempt_count_equals(int preempt_offset)
++{
++	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
++
++	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
++}
++
++void __might_sleep(const char *file, int line, int preempt_offset)
++{
++#ifdef in_atomic
++	static unsigned long prev_jiffy;	/* ratelimiting */
++
++	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
++	    system_state != SYSTEM_RUNNING || oops_in_progress)
++		return;
++	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++		return;
++	prev_jiffy = jiffies;
++
++	printk(KERN_ERR
++		"BUG: sleeping function called from invalid context at %s:%d\n",
++			file, line);
++	printk(KERN_ERR
++		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
++			in_atomic(), irqs_disabled(),
++			current->pid, current->comm);
++
++	debug_show_held_locks(current);
++	if (irqs_disabled())
++		print_irqtrace_events(current);
++	dump_stack();
++#endif
++}
++EXPORT_SYMBOL(__might_sleep);
++#endif
++
++#ifdef CONFIG_MAGIC_SYSRQ
++void normalize_rt_tasks(void)
++{
++	struct task_struct *g, *p;
++	unsigned long flags;
++	struct rq *rq;
++	int queued;
++
++	read_lock_irq(&tasklist_lock);
++
++	do_each_thread(g, p) {
++		if (!rt_task(p) && !iso_task(p))
++			continue;
++
++		raw_spin_lock_irqsave(&p->pi_lock, flags);
++		rq = __task_grq_lock(p);
++
++		queued = task_queued(p);
++		if (queued)
++			dequeue_task(p);
++		__setscheduler(p, rq, SCHED_NORMAL, 0);
++		if (queued) {
++			enqueue_task(p);
++			try_preempt(p, rq);
++		}
++
++		__task_grq_unlock();
++		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++	} while_each_thread(g, p);
++
++	read_unlock_irq(&tasklist_lock);
++}
++#endif /* CONFIG_MAGIC_SYSRQ */
++
++#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
++/*
++ * These functions are only useful for the IA64 MCA handling, or kdb.
++ *
++ * They can only be called when the whole system has been
++ * stopped - every CPU needs to be quiescent, and no scheduling
++ * activity can take place. Using them for anything else would
++ * be a serious bug, and as a result, they aren't even visible
++ * under any other configuration.
++ */
++
++/**
++ * curr_task - return the current task for a given cpu.
++ * @cpu: the processor in question.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ */
++struct task_struct *curr_task(int cpu)
++{
++	return cpu_curr(cpu);
++}
++
++#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
++
++#ifdef CONFIG_IA64
++/**
++ * set_curr_task - set the current task for a given cpu.
++ * @cpu: the processor in question.
++ * @p: the task pointer to set.
++ *
++ * Description: This function must only be used when non-maskable interrupts
++ * are serviced on a separate stack.  It allows the architecture to switch the
++ * notion of the current task on a cpu in a non-blocking manner.  This function
++ * must be called with all CPU's synchronised, and interrupts disabled, the
++ * and caller must save the original value of the current task (see
++ * curr_task() above) and restore that value before reenabling interrupts and
++ * re-starting the system.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ */
++void set_curr_task(int cpu, struct task_struct *p)
++{
++	cpu_curr(cpu) = p;
++}
++
++#endif
++
++/*
++ * Use precise platform statistics if available:
++ */
++#ifdef CONFIG_VIRT_CPU_ACCOUNTING
++void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
++{
++	*ut = p->utime;
++	*st = p->stime;
++}
++
++void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
++{
++	struct task_cputime cputime;
++
++	thread_group_cputime(p, &cputime);
++
++	*ut = cputime.utime;
++	*st = cputime.stime;
++}
++#else
++
++#ifndef nsecs_to_cputime
++# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
++#endif
++
++void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
++{
++	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
++
++	rtime = nsecs_to_cputime(p->sched_time);
++
++	if (total) {
++		u64 temp;
++
++		temp = (u64)(rtime * utime);
++		do_div(temp, total);
++		utime = (cputime_t)temp;
++	} else
++		utime = rtime;
++
++	/*
++	 * Compare with previous values, to keep monotonicity:
++	 */
++	p->prev_utime = max(p->prev_utime, utime);
++	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
++
++	*ut = p->prev_utime;
++	*st = p->prev_stime;
++}
++
++/*
++ * Must be called with siglock held.
++ */
++void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
++{
++	struct signal_struct *sig = p->signal;
++	struct task_cputime cputime;
++	cputime_t rtime, utime, total;
++
++	thread_group_cputime(p, &cputime);
++
++	total = cputime_add(cputime.utime, cputime.stime);
++	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
++
++	if (total) {
++		u64 temp;
++
++		temp = (u64)(rtime * cputime.utime);
++		do_div(temp, total);
++		utime = (cputime_t)temp;
++	} else
++		utime = rtime;
++
++	sig->prev_utime = max(sig->prev_utime, utime);
++	sig->prev_stime = max(sig->prev_stime,
++			      cputime_sub(rtime, sig->prev_utime));
++
++	*ut = sig->prev_utime;
++	*st = sig->prev_stime;
++}
++#endif
++
++inline cputime_t task_gtime(struct task_struct *p)
++{
++	return p->gtime;
++}
++
++void __cpuinit init_idle_bootup_task(struct task_struct *idle)
++{}
++
++#ifdef CONFIG_SCHED_DEBUG
++void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
++{}
++
++void proc_sched_set_task(struct task_struct *p)
++{}
++#endif
++
++/* No RCU torture test support */
++void synchronize_sched_expedited(void)
++{
++	barrier();
++}
++EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
++
++#ifdef CONFIG_SMP
++unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
++{
++	return SCHED_LOAD_SCALE;
++}
++
++unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
++{
++	unsigned long weight = cpumask_weight(sched_domain_span(sd));
++	unsigned long smt_gain = sd->smt_gain;
++
++	smt_gain /= weight;
++
++	return smt_gain;
++}
++#endif
+Index: linux-2.6.37-ck2/kernel/sched.c
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/sched.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/kernel/sched.c	2011-02-14 09:47:50.994252001 +1100
+@@ -1,3 +1,6 @@
++#ifdef CONFIG_SCHED_BFS
++#include "sched_bfs.c"
++#else
+ /*
+  *  kernel/sched.c
+  *
+@@ -9603,3 +9606,4 @@
+ EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
+ 
+ #endif /* #else #ifndef CONFIG_SMP */
++#endif /* CONFIG_SCHED_BFS */
+Index: linux-2.6.37-ck2/kernel/sysctl.c
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/sysctl.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/kernel/sysctl.c	2011-02-14 09:47:50.995252001 +1100
+@@ -117,7 +117,12 @@
+ static int __maybe_unused one = 1;
+ static int __maybe_unused two = 2;
+ static unsigned long one_ul = 1;
+-static int one_hundred = 100;
++static int __maybe_unused one_hundred = 100;
++#ifdef CONFIG_SCHED_BFS
++extern int rr_interval;
++extern int sched_iso_cpu;
++static int __read_mostly one_thousand = 1000;
++#endif
+ #ifdef CONFIG_PRINTK
+ static int ten_thousand = 10000;
+ #endif
+@@ -252,7 +257,7 @@
+ 	{ }
+ };
+ 
+-#ifdef CONFIG_SCHED_DEBUG
++#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_BFS)
+ static int min_sched_granularity_ns = 100000;		/* 100 usecs */
+ static int max_sched_granularity_ns = NSEC_PER_SEC;	/* 1 second */
+ static int min_wakeup_granularity_ns;			/* 0 usecs */
+@@ -269,6 +274,7 @@
+ #endif
+ 
+ static struct ctl_table kern_table[] = {
++#ifndef CONFIG_SCHED_BFS
+ 	{
+ 		.procname	= "sched_child_runs_first",
+ 		.data		= &sysctl_sched_child_runs_first,
+@@ -382,6 +388,7 @@
+ 		.mode		= 0644,
+ 		.proc_handler	= proc_dointvec,
+ 	},
++#endif /* !CONFIG_SCHED_BFS */
+ #ifdef CONFIG_PROVE_LOCKING
+ 	{
+ 		.procname	= "prove_locking",
+@@ -815,6 +822,26 @@
+ 		.proc_handler	= proc_dointvec,
+ 	},
+ #endif
++#ifdef CONFIG_SCHED_BFS
++	{
++		.procname	= "rr_interval",
++		.data		= &rr_interval,
++		.maxlen		= sizeof (int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &one,
++		.extra2		= &one_thousand,
++	},
++	{
++		.procname	= "iso_cpu",
++		.data		= &sched_iso_cpu,
++		.maxlen		= sizeof (int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= &zero,
++		.extra2		= &one_hundred,
++	},
++#endif
+ #if defined(CONFIG_S390) && defined(CONFIG_SMP)
+ 	{
+ 		.procname	= "spin_retry",
+Index: linux-2.6.37-ck2/lib/Kconfig.debug
+===================================================================
+--- linux-2.6.37-ck2.orig/lib/Kconfig.debug	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/lib/Kconfig.debug	2011-02-14 09:47:50.995252001 +1100
+@@ -833,7 +833,7 @@
+ 
+ config RCU_TORTURE_TEST
+ 	tristate "torture tests for RCU"
+-	depends on DEBUG_KERNEL
++	depends on DEBUG_KERNEL && !SCHED_BFS
+ 	default n
+ 	help
+ 	  This option provides a kernel module that runs torture tests
+Index: linux-2.6.37-ck2/include/linux/jiffies.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/jiffies.h	2010-02-25 21:51:52.000000000 +1100
++++ linux-2.6.37-ck2/include/linux/jiffies.h	2011-02-14 09:47:50.995252001 +1100
+@@ -164,7 +164,7 @@
+  * Have the 32 bit jiffies value wrap 5 minutes after boot
+  * so jiffies wrap bugs show up earlier.
+  */
+-#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
++#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-10*HZ))
+ 
+ /*
+  * Change timeval to jiffies, trying to avoid the
+Index: linux-2.6.37-ck2/mm/vmscan.c
+===================================================================
+--- linux-2.6.37-ck2.orig/mm/vmscan.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/mm/vmscan.c	2011-02-14 10:11:01.693252000 +1100
+@@ -36,6 +36,7 @@
+ #include <linux/rwsem.h>
+ #include <linux/delay.h>
+ #include <linux/kthread.h>
++#include <linux/timer.h>
+ #include <linux/freezer.h>
+ #include <linux/memcontrol.h>
+ #include <linux/delayacct.h>
+@@ -133,7 +134,7 @@
+ /*
+  * From 0 .. 100.  Higher means more swappy.
+  */
+-int vm_swappiness = 60;
++int vm_swappiness;
+ long vm_total_pages;	/* The total number of pages which the VM controls */
+ 
+ static LIST_HEAD(shrinker_list);
+@@ -900,7 +901,7 @@
+ 
+ activate_locked:
+ 		/* Not a candidate for swapping, so reclaim swap space. */
+-		if (PageSwapCache(page) && vm_swap_full())
++		if (PageSwapCache(page))
+ 			try_to_free_swap(page);
+ 		VM_BUG_ON(PageActive(page));
+ 		SetPageActive(page);
+@@ -1855,6 +1856,35 @@
+ }
+ 
+ /*
++ * Helper functions to adjust nice level of kswapd, based on the priority of
++ * the task (p) that called it. If it is already higher priority we do not
++ * demote its nice level since it is still working on behalf of a higher
++ * priority task. With kernel threads we leave it at nice 0.
++ *
++ * We don't ever run kswapd real time, so if a real time task calls kswapd we
++ * set it to highest SCHED_NORMAL priority.
++ */
++static inline int effective_sc_prio(struct task_struct *p)
++{
++	if (likely(p->mm)) {
++		if (rt_task(p))
++			return -20;
++		if (p->policy == SCHED_IDLEPRIO)
++			return 19;
++		return task_nice(p);
++	}
++	return 0;
++}
++
++static void set_kswapd_nice(struct task_struct *kswapd, int active)
++{
++	long nice = effective_sc_prio(current);
++
++	if (task_nice(kswapd) > nice || !active)
++		set_user_nice(kswapd, nice);
++}
++
++/*
+  * This is the direct reclaim path, for page-allocating processes.  We only
+  * try to reclaim pages from zones which will satisfy the caller's allocation
+  * request.
+@@ -2371,6 +2401,8 @@
+ 	return sc.nr_reclaimed;
+ }
+ 
++#define WT_EXPIRY	(HZ * 5)	/* Time to wakeup watermark_timer */
++
+ /*
+  * The background pageout daemon, started as a kernel thread
+  * from the init process.
+@@ -2421,6 +2453,8 @@
+ 		unsigned long new_order;
+ 		int ret;
+ 
++		/* kswapd has been busy so delay watermark_timer */
++		mod_timer(&pgdat->watermark_timer, jiffies + WT_EXPIRY);
+ 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
+ 		new_order = pgdat->kswapd_max_order;
+ 		pgdat->kswapd_max_order = 0;
+@@ -2457,6 +2491,7 @@
+ 				}
+ 			}
+ 
++			set_user_nice(tsk, 0);
+ 			order = pgdat->kswapd_max_order;
+ 		}
+ 		finish_wait(&pgdat->kswapd_wait, &wait);
+@@ -2483,6 +2518,7 @@
+ void wakeup_kswapd(struct zone *zone, int order)
+ {
+ 	pg_data_t *pgdat;
++	int active;
+ 
+ 	if (!populated_zone(zone))
+ 		return;
+@@ -2495,7 +2531,9 @@
+	pgdat = zone->zone_pgdat;
+	if (pgdat->kswapd_max_order < order)
+		pgdat->kswapd_max_order = order;
+-	if (!waitqueue_active(&pgdat->kswapd_wait))
++	active = waitqueue_active(&pgdat->kswapd_wait);
++	set_kswapd_nice(pgdat->kswapd, active);
++	if (!active)
+		return;
+	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
+		return;
+@@ -2601,20 +2639,57 @@
+ }
+ 
+ /*
++ * We wake up kswapd every WT_EXPIRY till free ram is above pages_lots
++ */
++static void watermark_wakeup(unsigned long data)
++{
++	pg_data_t *pgdat = (pg_data_t *)data;
++	struct timer_list *wt = &pgdat->watermark_timer;
++	int i;
++
++	if (!waitqueue_active(&pgdat->kswapd_wait) || above_background_load())
++		goto out;
++	for (i = pgdat->nr_zones - 1; i >= 0; i--) {
++		struct zone *z = pgdat->node_zones + i;
++
++		if (!populated_zone(z) || is_highmem(z)) {
++			/* We are better off leaving highmem full */
++			continue;
++		}
++		if (!zone_watermark_ok(z, 0, lots_wmark_pages(z), 0, 0)) {
++			wake_up_interruptible(&pgdat->kswapd_wait);
++			goto out;
++		}
++	}
++out:
++	mod_timer(wt, jiffies + WT_EXPIRY);
++	return;
++}
++
++/*
+  * This kswapd start function will be called by init and node-hot-add.
+  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
+  */
+ int kswapd_run(int nid)
+ {
+ 	pg_data_t *pgdat = NODE_DATA(nid);
++	struct timer_list *wt;
+ 	int ret = 0;
+ 
+ 	if (pgdat->kswapd)
+ 		return 0;
+ 
++	wt = &pgdat->watermark_timer;
++	init_timer(wt);
++	wt->data = (unsigned long)pgdat;
++	wt->function = watermark_wakeup;
++	wt->expires = jiffies + WT_EXPIRY;
++	add_timer(wt);
++
+ 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
+ 	if (IS_ERR(pgdat->kswapd)) {
+ 		/* failure at boot is fatal */
++		del_timer(wt);
+ 		BUG_ON(system_state == SYSTEM_BOOTING);
+ 		printk("Failed to start kswapd on node %d\n",nid);
+ 		ret = -1;
+Index: linux-2.6.37-ck2/include/linux/swap.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/swap.h	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/include/linux/swap.h	2011-02-14 10:11:09.770252000 +1100
+@@ -192,7 +192,7 @@
+ 	int next;	/* swapfile to be used next */
+ };
+ 
+-/* Swap 50% full? Release swapcache more aggressively.. */
++/* Swap 50% full? */
+ #define vm_swap_full() (nr_swap_pages*2 < total_swap_pages)
+ 
+ /* linux/mm/page_alloc.c */
+@@ -206,6 +206,7 @@
+ 
+ 
+ /* linux/mm/swap.c */
++extern void ____lru_cache_add(struct page *, enum lru_list lru, int tail);
+ extern void __lru_cache_add(struct page *, enum lru_list lru);
+ extern void lru_cache_add_lru(struct page *, enum lru_list lru);
+ extern void activate_page(struct page *);
+@@ -226,9 +227,14 @@
+ 	__lru_cache_add(page, LRU_INACTIVE_ANON);
+ }
+ 
++static inline void lru_cache_add_file_tail(struct page *page, int tail)
++{
++	____lru_cache_add(page, LRU_INACTIVE_FILE, tail);
++}
++
+ static inline void lru_cache_add_file(struct page *page)
+ {
+-	__lru_cache_add(page, LRU_INACTIVE_FILE);
++	____lru_cache_add(page, LRU_INACTIVE_FILE, 0);
+ }
+ 
+ /* LRU Isolation modes. */
+@@ -348,9 +354,10 @@
+ extern void grab_swap_token(struct mm_struct *);
+ extern void __put_swap_token(struct mm_struct *);
+ 
++/* Only allow swap token to have effect if swap is full */
+ static inline int has_swap_token(struct mm_struct *mm)
+ {
+-	return (mm == swap_token_mm);
++	return (mm == swap_token_mm && vm_swap_full());
+ }
+ 
+ static inline void put_swap_token(struct mm_struct *mm)
+Index: linux-2.6.37-ck2/mm/memory.c
+===================================================================
+--- linux-2.6.37-ck2.orig/mm/memory.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/mm/memory.c	2011-02-14 10:11:00.984252001 +1100
+@@ -2754,7 +2754,7 @@
+ 	mem_cgroup_commit_charge_swapin(page, ptr);
+ 
+ 	swap_free(entry);
+-	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
++	if ((vma->vm_flags & VM_LOCKED) || PageMlocked(page))
+ 		try_to_free_swap(page);
+ 	unlock_page(page);
+ 	if (swapcache) {
+Index: linux-2.6.37-ck2/mm/swapfile.c
+===================================================================
+--- linux-2.6.37-ck2.orig/mm/swapfile.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/mm/swapfile.c	2011-02-14 10:11:00.985252001 +1100
+@@ -321,7 +321,7 @@
+ 		scan_base = offset = si->lowest_bit;
+ 
+ 	/* reuse swap entry of cache-only swap if not busy. */
+-	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
++	if (si->swap_map[offset] == SWAP_HAS_CACHE) {
+ 		int swap_was_freed;
+ 		spin_unlock(&swap_lock);
+ 		swap_was_freed = __try_to_reclaim_swap(si, offset);
+@@ -410,7 +410,7 @@
+ 			spin_lock(&swap_lock);
+ 			goto checks;
+ 		}
+-		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
++		if (si->swap_map[offset] == SWAP_HAS_CACHE) {
+ 			spin_lock(&swap_lock);
+ 			goto checks;
+ 		}
+@@ -425,7 +425,7 @@
+ 			spin_lock(&swap_lock);
+ 			goto checks;
+ 		}
+-		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
++		if (si->swap_map[offset] == SWAP_HAS_CACHE) {
+ 			spin_lock(&swap_lock);
+ 			goto checks;
+ 		}
+@@ -739,8 +739,7 @@
+ 		 * Not mapped elsewhere, or swap space full? Free it!
+ 		 * Also recheck PageSwapCache now page is locked (above).
+ 		 */
+-		if (PageSwapCache(page) && !PageWriteback(page) &&
+-				(!page_mapped(page) || vm_swap_full())) {
++		if (PageSwapCache(page) && !PageWriteback(page)) {
+ 			delete_from_swap_cache(page);
+ 			SetPageDirty(page);
+ 		}
+Index: linux-2.6.37-ck2/include/linux/mmzone.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/mmzone.h	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/include/linux/mmzone.h	2011-02-14 10:11:01.470252001 +1100
+@@ -15,6 +15,7 @@
+ #include <linux/seqlock.h>
+ #include <linux/nodemask.h>
+ #include <linux/pageblock-flags.h>
++#include <linux/timer.h>
+ #include <generated/bounds.h>
+ #include <asm/atomic.h>
+ #include <asm/page.h>
+@@ -161,12 +162,14 @@
+ 	WMARK_MIN,
+ 	WMARK_LOW,
+ 	WMARK_HIGH,
++	WMARK_LOTS,
+ 	NR_WMARK
+ };
+ 
+ #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
+ #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
+ #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
++#define lots_wmark_pages(z) (z->watermark[WMARK_LOTS])
+ 
+ struct per_cpu_pages {
+ 	int count;		/* number of pages in the list */
+@@ -343,7 +346,7 @@
+ 	ZONE_PADDING(_pad1_)
+ 
+ 	/* Fields commonly accessed by the page reclaim scanner */
+-	spinlock_t		lru_lock;	
++	spinlock_t		lru_lock;
+ 	struct zone_lru {
+ 		struct list_head list;
+ 	} lru[NR_LRU_LISTS];
+@@ -645,6 +648,7 @@
+ 	wait_queue_head_t kswapd_wait;
+ 	struct task_struct *kswapd;
+ 	int kswapd_max_order;
++	struct timer_list watermark_timer;
+ } pg_data_t;
+ 
+ #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
+Index: linux-2.6.37-ck2/include/linux/mm_inline.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/mm_inline.h	2009-12-03 21:40:09.000000000 +1100
++++ linux-2.6.37-ck2/include/linux/mm_inline.h	2011-02-14 10:11:09.770252000 +1100
+@@ -20,14 +20,24 @@
+ }
+ 
+ static inline void
+-add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l)
++__add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l, int tail)
+ {
+-	list_add(&page->lru, &zone->lru[l].list);
++	/* See if this should be added to the tail of this lru list */
++	if (tail)
++		list_add_tail(&page->lru, &zone->lru[l].list);
++	else
++		list_add(&page->lru, &zone->lru[l].list);
+ 	__inc_zone_state(zone, NR_LRU_BASE + l);
+ 	mem_cgroup_add_lru_list(page, l);
+ }
+ 
+ static inline void
++add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l)
++{
++	__add_page_to_lru_list(zone, page, l, 0);
++}
++
++static inline void
+ del_page_from_lru_list(struct zone *zone, struct page *page, enum lru_list l)
+ {
+ 	list_del(&page->lru);
+Index: linux-2.6.37-ck2/mm/filemap.c
+===================================================================
+--- linux-2.6.37-ck2.orig/mm/filemap.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/mm/filemap.c	2011-02-14 10:11:09.772252000 +1100
+@@ -439,8 +439,8 @@
+ }
+ EXPORT_SYMBOL(add_to_page_cache_locked);
+ 
+-int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
+-				pgoff_t offset, gfp_t gfp_mask)
++int __add_to_page_cache_lru(struct page *page, struct address_space *mapping,
++				pgoff_t offset, gfp_t gfp_mask, int tail)
+ {
+ 	int ret;
+ 
+@@ -456,12 +456,18 @@
+ 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
+ 	if (ret == 0) {
+ 		if (page_is_file_cache(page))
+-			lru_cache_add_file(page);
++			lru_cache_add_file_tail(page, tail);
+ 		else
+ 			lru_cache_add_anon(page);
+ 	}
+ 	return ret;
+ }
++
++int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
++				pgoff_t offset, gfp_t gfp_mask)
++{
++	return __add_to_page_cache_lru(page, mapping, offset, gfp_mask, 0);
++}
+ EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
+ 
+ #ifdef CONFIG_NUMA
+@@ -968,6 +974,28 @@
+ 	ra->ra_pages /= 4;
+ }
+ 
++static inline int nr_mapped(void)
++{
++	return global_page_state(NR_FILE_MAPPED) +
++		global_page_state(NR_ANON_PAGES);
++}
++
++/*
++ * This examines how large in pages a file size is and returns 1 if it is
++ * more than half the unmapped ram. Avoid doing read_page_state which is
++ * expensive unless we already know it is likely to be large enough.
++ */
++static int large_isize(unsigned long nr_pages)
++{
++	if (nr_pages * 6 > vm_total_pages) {
++		 unsigned long unmapped_ram = vm_total_pages - nr_mapped();
++
++		if (nr_pages * 2 > unmapped_ram)
++			return 1;
++	}
++	return 0;
++}
++
+ /**
+  * do_generic_file_read - generic file read routine
+  * @filp:	the file to read
+@@ -992,7 +1020,7 @@
+ 	pgoff_t prev_index;
+ 	unsigned long offset;      /* offset into pagecache page */
+ 	unsigned int prev_offset;
+-	int error;
++	int error, tail = 0;
+ 
+ 	index = *ppos >> PAGE_CACHE_SHIFT;
+ 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
+@@ -1003,7 +1031,7 @@
+ 	for (;;) {
+ 		struct page *page;
+ 		pgoff_t end_index;
+-		loff_t isize;
++		loff_t isize = 0;
+ 		unsigned long nr, ret;
+ 
+ 		cond_resched();
+@@ -1177,8 +1205,16 @@
+ 			desc->error = -ENOMEM;
+ 			goto out;
+ 		}
+-		error = add_to_page_cache_lru(page, mapping,
+-						index, GFP_KERNEL);
++		/*
++		 * If we know the file is large we add the pages read to the
++		 * end of the lru as we're unlikely to be able to cache the
++		 * whole file in ram so make those pages the first to be
++		 * dropped if not referenced soon.
++		 */
++		if (large_isize(end_index))
++			tail = 1;
++		error = __add_to_page_cache_lru(page, mapping,
++						index, GFP_KERNEL, tail);
+ 		if (error) {
+ 			page_cache_release(page);
+ 			if (error == -EEXIST)
+Index: linux-2.6.37-ck2/mm/swap.c
+===================================================================
+--- linux-2.6.37-ck2.orig/mm/swap.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/mm/swap.c	2011-02-14 10:11:09.772252000 +1100
+@@ -215,15 +215,23 @@
+ 
+ EXPORT_SYMBOL(mark_page_accessed);
+ 
+-void __lru_cache_add(struct page *page, enum lru_list lru)
++void ______pagevec_lru_add(struct pagevec *pvec, enum lru_list lru, int tail);
++
++void ____lru_cache_add(struct page *page, enum lru_list lru, int tail)
+ {
+ 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
+ 
+ 	page_cache_get(page);
+ 	if (!pagevec_add(pvec, page))
+-		____pagevec_lru_add(pvec, lru);
++		______pagevec_lru_add(pvec, lru, tail);
+ 	put_cpu_var(lru_add_pvecs);
+ }
++EXPORT_SYMBOL(____lru_cache_add);
++
++void __lru_cache_add(struct page *page, enum lru_list lru)
++{
++	____lru_cache_add(page, lru, 0);
++}
+ EXPORT_SYMBOL(__lru_cache_add);
+ 
+ /**
+@@ -231,7 +239,7 @@
+  * @page: the page to be added to the LRU.
+  * @lru: the LRU list to which the page is added.
+  */
+-void lru_cache_add_lru(struct page *page, enum lru_list lru)
++void __lru_cache_add_lru(struct page *page, enum lru_list lru, int tail)
+ {
+ 	if (PageActive(page)) {
+ 		VM_BUG_ON(PageUnevictable(page));
+@@ -242,7 +250,12 @@
+ 	}
+ 
+ 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
+-	__lru_cache_add(page, lru);
++	____lru_cache_add(page, lru, tail);
++}
++
++void lru_cache_add_lru(struct page *page, enum lru_list lru)
++{
++	__lru_cache_add_lru(page, lru, 0);
+ }
+ 
+ /**
+@@ -403,7 +416,7 @@
+  * Add the passed pages to the LRU, then drop the caller's refcount
+  * on them.  Reinitialises the caller's pagevec.
+  */
+-void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
++void ______pagevec_lru_add(struct pagevec *pvec, enum lru_list lru, int tail)
+ {
+ 	int i;
+ 	struct zone *zone = NULL;
+@@ -431,7 +444,7 @@
+ 		if (active)
+ 			SetPageActive(page);
+ 		update_page_reclaim_stat(zone, page, file, active);
+-		add_page_to_lru_list(zone, page, lru);
++		__add_page_to_lru_list(zone, page, lru, tail);
+ 	}
+ 	if (zone)
+ 		spin_unlock_irq(&zone->lru_lock);
+@@ -439,6 +452,11 @@
+ 	pagevec_reinit(pvec);
+ }
+ 
++void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
++{
++	______pagevec_lru_add(pvec, lru, 0);
++}
++
+ EXPORT_SYMBOL(____pagevec_lru_add);
+ 
+ /*
+Index: linux-2.6.37-ck2/mm/page-writeback.c
+===================================================================
+--- linux-2.6.37-ck2.orig/mm/page-writeback.c	2011-01-06 14:04:10.000000000 +1100
++++ linux-2.6.37-ck2/mm/page-writeback.c	2011-02-14 10:11:10.037252000 +1100
+@@ -78,7 +78,7 @@
+ /*
+  * The generator of dirty data starts writeback at this percentage
+  */
+-int vm_dirty_ratio = 20;
++int vm_dirty_ratio = 5;
+ 
+ /*
+  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
+Index: linux-2.6.37-ck2/arch/x86/Kconfig
+===================================================================
+--- linux-2.6.37-ck2.orig/arch/x86/Kconfig	2011-01-06 14:04:08.000000000 +1100
++++ linux-2.6.37-ck2/arch/x86/Kconfig	2011-02-14 10:11:10.260252001 +1100
+@@ -1046,7 +1046,7 @@
+ 
+ choice
+ 	depends on EXPERIMENTAL
+-	prompt "Memory split" if EMBEDDED
++	prompt "Memory split"
+ 	default VMSPLIT_3G
+ 	depends on X86_32
+ 	---help---
+@@ -1066,17 +1066,17 @@
+ 	  option alone!
+ 
+ 	config VMSPLIT_3G
+-		bool "3G/1G user/kernel split"
++		bool "Default 896MB lowmem (3G/1G user/kernel split)"
+ 	config VMSPLIT_3G_OPT
+ 		depends on !X86_PAE
+-		bool "3G/1G user/kernel split (for full 1G low memory)"
++		bool "1GB lowmem (3G/1G user/kernel split)"
+ 	config VMSPLIT_2G
+-		bool "2G/2G user/kernel split"
++		bool "2GB lowmem (2G/2G user/kernel split)"
+ 	config VMSPLIT_2G_OPT
+ 		depends on !X86_PAE
+-		bool "2G/2G user/kernel split (for full 2G low memory)"
++		bool "2GB lowmem (2G/2G user/kernel split)"
+ 	config VMSPLIT_1G
+-		bool "1G/3G user/kernel split"
++		bool "3GB lowmem (1G/3G user/kernel split)"
+ endchoice
+ 
+ config PAGE_OFFSET
+Index: linux-2.6.37-ck2/kernel/Kconfig.hz
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/Kconfig.hz	2009-06-10 13:05:27.000000000 +1000
++++ linux-2.6.37-ck2/kernel/Kconfig.hz	2011-02-14 10:11:10.921252001 +1100
+@@ -4,7 +4,7 @@
+ 
+ choice
+ 	prompt "Timer frequency"
+-	default HZ_250
++	default HZ_1000
+ 	help
+ 	 Allows the configuration of the timer frequency. It is customary
+ 	 to have the timer interrupt run at 1000 Hz but 100 Hz may be more
+@@ -23,13 +23,14 @@
+ 	  with lots of processors that may show reduced performance if
+ 	  too many timer interrupts are occurring.
+ 
+-	config HZ_250
++	config HZ_250_NODEFAULT
+ 		bool "250 HZ"
+ 	help
+-	 250 Hz is a good compromise choice allowing server performance
+-	 while also showing good interactive responsiveness even
+-	 on SMP and NUMA systems. If you are going to be using NTSC video
+-	 or multimedia, selected 300Hz instead.
++	 250 HZ is a lousy compromise choice allowing server interactivity
++	 while also showing desktop throughput and no extra power saving on
++	 laptops. No good for anything.
++
++	 Recommend 100 or 1000 instead.
+ 
+ 	config HZ_300
+ 		bool "300 HZ"
+@@ -43,16 +44,82 @@
+ 		bool "1000 HZ"
+ 	help
+ 	 1000 Hz is the preferred choice for desktop systems and other
+-	 systems requiring fast interactive responses to events.
++	 systems requiring fast interactive responses to events. Laptops
++	 can also benefit from this choice without sacrificing battery life
++	 if dynticks is also enabled.
++
++	config HZ_1500
++		bool "1500 HZ"
++	help
++	 1500 Hz is an insane value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
++	config HZ_2000
++		bool "2000 HZ"
++	help
++	 2000 Hz is an insane value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
++	config HZ_3000
++		bool "3000 HZ"
++	help
++	 3000 Hz is an insane value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
++	config HZ_4000
++		bool "4000 HZ"
++	help
++	 4000 Hz is an insane value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
++	config HZ_5000
++		bool "5000 HZ"
++	help
++	 5000 Hz is an obscene value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
++	config HZ_7500
++		bool "7500 HZ"
++	help
++	 7500 Hz is an obscene value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
++	config HZ_10000
++		bool "10000 HZ"
++	help
++	 10000 Hz is an obscene value to use to run broken software that is Hz
++	 limited.
++
++	 Being over 1000, driver breakage is likely.
++
+ 
+ endchoice
+ 
+ config HZ
+ 	int
+ 	default 100 if HZ_100
+-	default 250 if HZ_250
++	default 250 if HZ_250_NODEFAULT
+ 	default 300 if HZ_300
+ 	default 1000 if HZ_1000
++	default 1500 if HZ_1500
++	default 2000 if HZ_2000
++	default 3000 if HZ_3000
++	default 4000 if HZ_4000
++	default 5000 if HZ_5000
++	default 7500 if HZ_7500
++	default 10000 if HZ_10000
+ 
+ config SCHED_HRTICK
+ 	def_bool HIGH_RES_TIMERS && (!SMP || USE_GENERIC_SMP_HELPERS)
+Index: linux-2.6.37-ck2/arch/x86/kernel/cpu/proc.c
+===================================================================
+--- linux-2.6.37-ck2.orig/arch/x86/kernel/cpu/proc.c	2009-12-03 21:39:58.000000000 +1100
++++ linux-2.6.37-ck2/arch/x86/kernel/cpu/proc.c	2011-02-14 10:11:10.919252001 +1100
+@@ -109,7 +109,7 @@
+ 
+ 	seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
+ 		   c->loops_per_jiffy/(500000/HZ),
+-		   (c->loops_per_jiffy/(5000/HZ)) % 100);
++		   (c->loops_per_jiffy * 10 /(50000/HZ)) % 100);
+ 
+ #ifdef CONFIG_X86_64
+ 	if (c->x86_tlbsize > 0)
+Index: linux-2.6.37-ck2/arch/x86/kernel/smpboot.c
+===================================================================
+--- linux-2.6.37-ck2.orig/arch/x86/kernel/smpboot.c	2011-01-06 14:04:08.000000000 +1100
++++ linux-2.6.37-ck2/arch/x86/kernel/smpboot.c	2011-02-14 10:11:10.920252001 +1100
+@@ -497,7 +497,7 @@
+ 		"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
+ 		num_online_cpus(),
+ 		bogosum/(500000/HZ),
+-		(bogosum/(5000/HZ))%100);
++		(bogosum * 10/(50000/HZ))%100);
+ 
+ 	pr_debug("Before bogocount - setting activated=1.\n");
+ }
+Index: linux-2.6.37-ck2/include/linux/nfsd/stats.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/linux/nfsd/stats.h	2009-06-10 13:05:27.000000000 +1000
++++ linux-2.6.37-ck2/include/linux/nfsd/stats.h	2011-02-14 10:11:10.920252001 +1100
+@@ -11,8 +11,8 @@
+ 
+ #include <linux/nfs4.h>
+ 
+-/* thread usage wraps very million seconds (approx one fortnight) */
+-#define	NFSD_USAGE_WRAP	(HZ*1000000)
++/* thread usage wraps every one hundred thousand seconds (approx one day) */
++#define	NFSD_USAGE_WRAP	(HZ*100000)
+ 
+ #ifdef __KERNEL__
+ 
+Index: linux-2.6.37-ck2/include/net/inet_timewait_sock.h
+===================================================================
+--- linux-2.6.37-ck2.orig/include/net/inet_timewait_sock.h	2010-08-02 11:12:25.000000000 +1000
++++ linux-2.6.37-ck2/include/net/inet_timewait_sock.h	2011-02-14 10:11:10.920252001 +1100
+@@ -39,8 +39,8 @@
+  * If time > 4sec, it is "slow" path, no recycling is required,
+  * so that we select tick to get range about 4 seconds.
+  */
+-#if HZ <= 16 || HZ > 4096
+-# error Unsupported: HZ <= 16 or HZ > 4096
++#if HZ <= 16 || HZ > 16384
++# error Unsupported: HZ <= 16 or HZ > 16384
+ #elif HZ <= 32
+ # define INET_TWDR_RECYCLE_TICK (5 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
+ #elif HZ <= 64
+@@ -55,8 +55,12 @@
+ # define INET_TWDR_RECYCLE_TICK (10 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
+ #elif HZ <= 2048
+ # define INET_TWDR_RECYCLE_TICK (11 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
+-#else
++#elif HZ <= 4096
+ # define INET_TWDR_RECYCLE_TICK (12 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
++#elif HZ <= 8192
++# define INET_TWDR_RECYCLE_TICK (13 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
++#else
++# define INET_TWDR_RECYCLE_TICK (14 + 2 - INET_TWDR_RECYCLE_SLOTS_LOG)
+ #endif
+ 
+ /* TIME_WAIT reaping mechanism. */
+Index: linux-2.6.37-ck2/init/calibrate.c
+===================================================================
+--- linux-2.6.37-ck2.orig/init/calibrate.c	2010-02-25 21:51:52.000000000 +1100
++++ linux-2.6.37-ck2/init/calibrate.c	2011-02-14 10:11:10.921252001 +1100
+@@ -176,7 +176,7 @@
+ 	if (!printed)
+ 		pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
+ 			loops_per_jiffy/(500000/HZ),
+-			(loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
++			(loops_per_jiffy * 10 /(50000/HZ)) % 100, loops_per_jiffy);
+ 
+ 	printed = true;
+ }
+Index: linux-2.6.37-ck2/kernel/Kconfig.preempt
+===================================================================
+--- linux-2.6.37-ck2.orig/kernel/Kconfig.preempt	2009-06-10 13:05:27.000000000 +1000
++++ linux-2.6.37-ck2/kernel/Kconfig.preempt	2011-02-14 10:11:11.217252001 +1100
+@@ -1,7 +1,7 @@
+ 
+ choice
+ 	prompt "Preemption Model"
+-	default PREEMPT_NONE
++	default PREEMPT
+ 
+ config PREEMPT_NONE
+ 	bool "No Forced Preemption (Server)"
+@@ -17,7 +17,7 @@
+ 	  latencies.
+ 
+ config PREEMPT_VOLUNTARY
+-	bool "Voluntary Kernel Preemption (Desktop)"
++	bool "Voluntary Kernel Preemption (Nothing)"
+ 	help
+ 	  This option reduces the latency of the kernel by adding more
+ 	  "explicit preemption points" to the kernel code. These new
+@@ -31,7 +31,8 @@
+ 	  applications to run more 'smoothly' even when the system is
+ 	  under load.
+ 
+-	  Select this if you are building a kernel for a desktop system.
++	  Select this for no system in particular (choose Preemptible
++	  instead on a desktop if you know what's good for you).
+ 
+ config PREEMPT
+ 	bool "Preemptible Kernel (Low-Latency Desktop)"
+Index: linux-2.6.37-ck2/drivers/cpufreq/cpufreq_ondemand.c
+===================================================================
+--- linux-2.6.37-ck2.orig/drivers/cpufreq/cpufreq_ondemand.c	2011-01-06 14:04:08.000000000 +1100
++++ linux-2.6.37-ck2/drivers/cpufreq/cpufreq_ondemand.c	2011-02-14 10:11:11.438252001 +1100
+@@ -28,12 +28,12 @@
+  * It helps to keep variable names smaller, simpler
+  */
+ 
+-#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
+-#define DEF_FREQUENCY_UP_THRESHOLD		(80)
++#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(17)
++#define DEF_FREQUENCY_UP_THRESHOLD		(63)
+ #define DEF_SAMPLING_DOWN_FACTOR		(1)
+ #define MAX_SAMPLING_DOWN_FACTOR		(100000)
+ #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
+-#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
++#define MICRO_FREQUENCY_UP_THRESHOLD		(80)
+ #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
+ #define MIN_FREQUENCY_UP_THRESHOLD		(11)
+ #define MAX_FREQUENCY_UP_THRESHOLD		(100)
+@@ -513,10 +513,10 @@
+ 
+ 	/*
+ 	 * Every sampling_rate, we check, if current idle time is less
+-	 * than 20% (default), then we try to increase frequency
++	 * than 37% (default), then we try to increase frequency
+ 	 * Every sampling_rate, we look for a the lowest
+ 	 * frequency which can sustain the load while keeping idle time over
+-	 * 30%. If such a frequency exist, we try to decrease to this frequency.
++	 * 50%. If such a frequency exist, we try to decrease to this frequency.
+ 	 *
+ 	 * Any frequency increase takes it to the maximum frequency.
+ 	 * Frequency reduction happens at minimum steps of
+Index: linux-2.6.37-ck2/Makefile
+===================================================================
+--- linux-2.6.37-ck2.orig/Makefile	2011-01-06 14:04:07.000000000 +1100
++++ linux-2.6.37-ck2/Makefile	2011-02-14 10:11:20.469252000 +1100
+@@ -10,6 +10,10 @@
+ # Comments in this file are targeted only to the developer, do not
+ # expect to learn how to build the kernel reading this file.
+ 
++CKVERSION = -ck2
++CKNAME = BFS Powered
++EXTRAVERSION := $(EXTRAVERSION)$(CKVERSION)
++
+ # Do not:
+ # o  use make's built-in rules and variables
+ #    (this increases performance and avoids hard-to-debug behaviour);
-- 
cgit v0.12